共生与寄生

symbiose - parasitism

  生物与其他生物之间有着永久的密切联系,其相互作用可以根据生物体的关联程度、这些相互作用的持续时间及其对双方的有益或有害影响来分类。所有的中间情况都存在,这形成了一个真正的连续体,其中既有需要其他生物体以养活自己的自由生物,也有生命周期完全受制于特定宿主的寄生虫。共生和寄生说明,除了极端多样化的情况外,相互作用在任何情况下对生物间的生活都至关重要,而且往往是由此构成的系统出现新特性的根源(are often at the origin of the emergence of new properties for the systems thus constituted。例如,与每个生物体相关的微生物群正是如此。不过与健康个体相比,那些被寄生虫改变的生物体也是这种情况,寄生虫感染了它们,甚至扰乱受感染宿主的行为。

1.一些定义

  生物圈内数十亿生物之间存在着相互作用和相互依赖的网络{生物圈指地球所有生态系统所在的生存空间,与存在生命的大气层、水圈和岩石圈的薄层相对应。这种动态的生存空间是由能量供应(主要来自太阳)和生物体与其环境相互作用的新陈代谢来维持。},生物圈这一层级是生物多样性概念的基础(阅读什么是生物多样性?)。这些相互作用通常是互利的,并在生物体的生理和适应环境方面发挥着至关重要的作用。例如,许多动物如果没有消化道中细菌的帮助就无法消化,大多数植物仅能通过定值在根部的真菌来利用土壤,作为回报,真菌以植物为食[1]

环境百科全是-生命-共生与互惠的关系
图1.共生与互惠的关系[资料来源:来自勒菲夫尔(Lefèvre)等人;见参考[2]
(Coexistence physique durable(symbiose au sens large) 可持续的物理共存(广义上的共生);Mutualisme(bebefice reciproque), avec ou sans coexistence 互惠主义(互惠互利),有无共存;Interaction parasite 寄生相互作用;Coexistence et mutualisme 共存与互惠;Interaction trasitoire 瞬态交互;Symbiose mutualiste: coexistence et benefice reciproque 互惠共生:共存互利)

   但情况并非总是如此:两种生物之间的相互作用可以根据它们对双方的有益、有害或中性影响进行分类。因此,人们可以区分对一方有利而对另一方有害的相互作用(捕食、寄生)、对一方有利且对另一方无害的相互作用(共生)和互利的相互作用(互利共生)。所有中间情况都存在,由此形成了相互作用类型的连续体(图1)[2]。它们也可以根据它们的瞬时性(捕食)或可持续性质(寄生、互利共生等)以及共生体双方之间的关联程度进行分类[2]。在词源上,共生一词指“不同物种的生物体的共同生活”。这个广义的定义是指的是一种可持续的共存,包括两种生物的全部或部分生命周期,而不管生物间的交换。“共生”更狭义的定义仅指可持续和互惠共存(见图1红色部分)。

2.互惠共生

环境百科全是-生命-涉及真菌的互惠共生的例子
图2.涉及真菌的互惠共生的例子
A,绿藻和子囊菌共生形成的丽石黄衣[来源:©杰森·霍林格(Jason Hollinger)@蘑菇观察者(CC BY-SA 3.0)通过Creative Commons]; B,与青云杉(棕色)根相关的外生菌根真菌的菌丝体(白色)[©安德烈-皮卡德博士(André-Ph. D. Picard)(CC BY-SA 3.0)通过Wikimedia Commons]; C,鸟巢兰,一种非叶绿素植物,利用菌根真菌和其他植物的碳[来源:©马克-安德烈·塞洛塞(Marc-André Selosse)]; D,苇状羊茅内生真菌,一种生活在高羊茅(高羊茅属)中的内共生真菌,它通过分泌对食草动物有毒的生物碱来保护其免受食草动物的侵害。[http://betterknowamicrobe.tumblr.com/post/75909408589/neotyphodium-coenophialum]; E.微小的真菌从一群大头切叶蚁身上长出蘑菇,形成白色的霉菌,生长在蚂蚁带来的叶子上。[来源: ©亚历克斯(Alex)Wild/alexanderwild.com,已获许可].
   当一方获得另一方被剥夺或限制的资源时,共生的好处往往是营养性的{与个体、生命组织的营养有关的形容词。指物种之间的关系(特别是捕食-被捕食关系),生态系统内生产者、消费者和分解者之间能量和养分的循环和流动。第一营养级是自养生物,在这个层级之上,食物链中的每个环节都对应一个营养级。}[2]。因此,许多共生关系涉及自养生物{指通过还原无机物和外部能源产生有机物的生物,光(光自养有机体)或化学反应(化能自养有机体)。}:在地衣{由真菌和藻类共生形成的生物体。藻类利用空气中的二氧化碳 (CO2) 和太阳辐射(光合作用)合成有机物质。作为回报,真菌从环境中获取水和矿物盐,这些水和矿物盐对地衣共生至关重要}(图 2A)或菌根{植物根系与土壤真菌之间的共生关系。它们影响超过95%的陆生植物。它们使植物能够更好地获取土壤养分,并帮助它们更好地抵抗环境压力。}(图 2B)中,藻类或植物通过光合作用为真菌提供养料,而真菌则从环境中获取水和矿物盐,供自身及其共生体使用。异养生物{指动物、真菌、某些植物、原核生物等生物体,不能从简单的矿物分子(CO2…)自行合成有机物,因此使用最初由自养生物体产生的外源有机物来源。}也建立了营养级联系。例如,燕窝兰花(鸟巢兰属,Neottia nidus-avis,图 2C)或松树(水晶兰属松下兰属,Monotropa hypopitys)是非叶绿素植物,它们通过利用其菌根真菌的碳来逆转通常的菌根关系,从而间接地利用与这些真菌相关的其他邻近植物的碳[3]。同样,蚂蚁和白蚁等几种群居昆虫也与真菌建立共生关系,通过在巢穴外采集植物生物质来喂养真菌(图2D)。这些昆虫食用且可以消化部分真菌菌丝体,而它们无法消化植物的生物质(特别是木质素)。

环境百科全是-生命-珊瑚礁的一些共生生物
图3.珊瑚礁的一些共生生物
A,海葵中的小丑鱼。[来源:©尼克·霍布古德(Nick Hobgood)(CCBY-SA 3.0)通过Wikimedia Commons]; B,海葵中的共生虾岩虾[来源:©伊利斯·拉兹洛(Ilyes Lazlo) (CC BY 2.0)通过Wikimedia Commons]; C,共生型珊瑚的虫黄藻[来源:©宾夕法尼亚州立大学/弗利克(Flickr)(CC BY-NC 2.0)]; D,附着在珊瑚上的侏儒海马[来源:©约翰·西尔(John Sear)(CC BY 3.0) 通过Wikimedia Commons]
   内生{表征一种共生关联,其中一种被称为内共生体的生物存在于宿主的细胞内。}细菌在昆虫内非常常见,并补充了它们的特殊营养[5]。例如,吸食汁液的半翅目昆虫缺乏必需氨基酸,由合成这些氨基酸的内共生细菌补偿。共生可以抵御环境压力,尤其是当一方寄居在另一方体内时。在菌根中,真菌通常在根部受到保护(某些内生菌根的情况下,真菌在根部储存其储备物质),但当它在根部周围形成一个套管(外生菌根)时,它也可以保护根部。内生真菌属(Neotyphodium)(图2E)的一种真菌以共生关系生活在高羊茅(高羊茅,Festuca arundinacea)体内,通过分泌对昆虫和哺乳动物有毒的生物碱保护其免受食草动物的伤害。这种真菌通过在种子[4]上定植而代代相传。保护有时是唯一可获得的好处,例如在珊瑚生态系统的清洁共生中,其中一种小动物(鱼或虾)清洁另一种小动物的皮肤和/或体腔,消除碎片和小寄生虫(图 3)。然而,这些珊瑚礁中的一些海葵在被鱼类“光顾”时生长得更快、存活几率更大,体内的虫黄藻(生活在海葵中的单细胞共生藻类)密度更高。营养物质从鱼类转移到海葵,带来海葵性能的提高,海葵利用鱼的尿液作为氮和磷酸盐的来源 [5]。这些观察表明小丑鱼为海葵提供食物,共生藻类也从中受益[6]

  其他好处取决于其中一方的移动能力,例如蜜蜂授粉、蚂蚁或鸟类传播种子的能力。在资产负债表上,类似功能的联盟合作在进化过程中多次出现。培育真菌的昆虫(蚂蚁、白蚁、甲虫)和细胞中含有光合藻类的真核生物{单细胞或多细胞生物,其细胞有细胞核和细胞器(内质网、高尔基体、各种质体、线粒体等),并由剥膜分隔。真核生物、细菌和古细是三类生物群之一。}(例如真核细胞中出现叶绿体)的多样性说明了这种趋同(叶绿体指光合真核细胞(植物、藻类)细胞质的有机体。作为光合作用的场所,叶绿体产生氧气并在碳循环中发挥重要作用:它们利用光能固定二氧化碳并合成有机物。因此,叶绿体负责植物的自养。叶绿体是大约15亿年前光合原核生物(蓝藻型)在真核细胞内共生的结果。}(见共生和进化)。在进化过程中,所有的组织都有机会形成一种或多种互惠共生关系。对于构成微观生物生态系统的大型多细胞生物而言尤其如此。因此,根际(植物根部周围的土壤)或动物的消化道是主要的微生物生态位,每个宿主都有数千种物种,其中一些寄生对宿主有利。因此,每个生物都有一系列共生体,在多细胞生物中尤为发达。

3.新兴共生特性

环境百科全书-生命-豆类根瘤
图4.豆类根瘤
A,苜蓿根上的苜蓿中华根瘤菌引起的根瘤(注意粉红色,由于一种携氧蛋白质,豆血红蛋白, Lb); B,苜蓿根上由苜蓿中华根瘤菌引起的根瘤部分的视图; C,透射电子显微镜显示共生类细菌体 (b) (Bradyrhyzobium 日本慢生根瘤菌) 在大豆根瘤中,被内吞膜包围(白色箭头); D,根瘤代谢,类菌体通过受控供应来自植物的氧气和碳质底物来确保固氮. A & B: [来源:©忍者塔可壳(Ninjatacoshell)(知识共享许可协议文本,CC BY-SA 3.0)通过Wikimedia Commons]. C:[来源:©路易莎·霍华德(Louisa Howard)-达特茅斯电子显微镜设备,通过Wikimedia Commons].(图4D PHLOEM 韧皮部;Healthy cell 健康的细胞;Sucrose 蔗糖;Malate 苹果酸;succinate 琥珀酸;Peribacteroid membrane 菌周膜;Catabolism 分解代谢;Bacteroid 拟杆菌;Membrane respiratory chain 膜呼吸链;Nitrogenase 固氮酶;infected cell 被感染的细胞;Glutamine 谷氨酰胺;XYLEM 木质部)
  除了增加共生体双方的能力之外,互惠共生还表现出了独立生物体所没有的某些特性。 首先,在形态层面,共生创造了在关联之外不存在的结构:根瘤(图4A和B)就是这种情况,根瘤是由细菌定植诱导的器官,其解剖结构与根不同,经常缺失末端分生组织、传导外周液的导管等。生活在细胞中的细菌结构也因而改变:失去了鞭毛和细胞壁,体积增大(如在结节中,图 4C)。由于植物将小蛋白质注入细菌中,因此这种改变的形态被称为“类菌体

  其他特征是功能性的。在根瘤的例子中(图 4D),拟杆菌利用呼吸获得的能量,通过固氮酶{某些原核生物特有的复合酶,可催化完整的反应序列,在此过程中,二氮 N2 的还原导致氨 NH3 的形成。该反应伴随着氢化反应。}将大气中的氮 N2 还原为铵 NH3,这是植物(和拟杆菌)的氮来源。相反,植物提供碳和氧。呼吸需要氧气,但固氮酶被因氧气而失活,这一矛盾解释了为什么土壤中的游离根瘤菌{可与豆科植物共生的好氧土壤细菌。这些细菌存在于根瘤中,可以固定和减少大气中的氮,然后被植物吸收。作为交换,植物为细菌提供碳质基质。}无法固氮。另一方面,氧气不会在结节中自由扩散,而是被宿主细胞的一种蛋白质豆血红蛋白捕获[7]。豆血红蛋白位于拟杆菌周围,可保护固氮酶免受氧气的灭活作用,并为细菌呼吸提供氧气储备。因此,只能在结节内实现固氮。

  共生还能诱导许多其他功能特性,例如一些依赖于诱导共生体双方防御的保护作用,共生体可以容忍这种保护作用,但对病原体是有害的。例如,菌根真菌诱导根部积累保护性单宁酸,这可以诱导整个植物(包括地上部分)提高防御和反应性水平。因此,与非菌根对照植物相比,菌根植物对食草动物或寄生虫的反应更快、更强烈。在地衣中,藻类诱导真菌合成次级代谢物,能抵御强光、保护食草动物。

环境百科全书-生命-人类微生物组多样性的代表
图5. 人类微生物组多样性的代表
中间是代表微生物群落物种的系统发育树。在外围是特定微生物群的代表 (肠道、胃、口、阴道,等等)。[来源:从摩根(Morgan)等人复制的方案 (2013); 见参考文献[9].](A map of diversity in the human microbiome 人类微生物组多样性图;Lactobacillus species (L.gasseri,L. jensenii.L.crispatus,L. iners) are predominant but mutually exclusive in the vagina 乳酸杆菌(Lactobacillus)属(格式乳杆菌(L. gasseri),詹氏乳杆菌( L. jensenii),卷曲亚种(L.crispatus), 惰性乳杆菌(L.iners))在阴道中占优势,但是相互排斥;Streptococcus dominates the oral cavity with S.mitis > 75% in the cheek 链球菌(Streptococcus)在口腔中占主导地位,脸颊上的缓症链球菌(S.mitis)>75%;Propionibacterium acnes lives on the skin and nose of most people 痤疮丙酸杆菌(Propionibacterium acnes)存在于大多数人的皮肤和鼻子上;Many Corynebacterium species characterize different body sites:C.matruchoti the plaque C.accolens the nose C. croppenstedtii the skin 许多棒状杆菌(Corynebacterium)是不同身体部位的特征:马氏棒杆菌(C.matruchoti)是牙菌斑的特征菌,拥挤棒杆菌(C.accolens)是鼻子的特征菌,克氏棒杆菌(C. croppenstedtii)是皮肤的特征菌;Several Prevotella species are present in the gastrointestinal tract. P. copri is present in 19% of the subjects and dominates the intestinal flora when present 胃肠道中存在着几种普雷沃氏菌(Prevotella)。19%的受试者中存在着粪源普雷沃氏菌(P. copri),并在存在时支配肠道菌;Bacteroides is the most abundant genus in the gut of almost all healthy subjects 在几乎所有的健康受试者的肠道中,拟杆菌(Bacteroides)是数量最多的一个属;Campylobacter includes opportunistic pathogens,but members live in the oral cavities of most Healthy people in the cohort 弯杆菌(Campylobacter)包括机会性病原体,但其成员生活在人群中大多数健康人的口腔中;E.coli is present in the gut of the majority of healthy subjects but at very low abundance 大肠杆菌(E.coli)存在于大多数健康受试者的肠道中,但含量非常低;Staphylococcus epidermidis colonizes external body sites 表皮葡萄球菌(Staphylococcus)定植于身体外部部位;Commensal microbes 共生微生物;Potential pathogens 潜在病原体;The four most abundant phyla 最丰富的四个门;Actinobacteria 放线菌门;Bacteroidetes 拟杆菌门;Firmicutes 厚壁菌门;Proteobacteria 变形菌门;Low abundance phyla 低丰度门;Chloroflexi 绿弯菌门;Spirochaetes 螺旋体门;Cyanobacteria 蓝细菌;Synergistetes 氧菌门;Euryarchaeota 广古菌门;Tenericutes 软壁菌门;Fusobacteria 梭杆菌门;Thermi 热硫杆状菌;Lentisphaerae 黏胶球形菌门;Verrucomicrobia 疣微杆菌门;Lactobacillus 乳酸杆菌;Streptococcus 链球菌;Corynebacterium 棒状杆菌属;Actinomyces 放线菌;Bifidobacterium 双歧杆菌属;Porphyromonas 卟啉菌属;Prevotella 普雷沃氏菌属;Bacteroides 拟杆菌属;Campylobacter 弯杆菌属;Neisseria 奈瑟氏菌属;Acinetobacter 不动杆菌属;Haemophilus 嗜血杆菌属;Escherichia 埃希氏菌属;Veillonella 韦荣氏球菌属;Selenomonas 月形单胞菌属;Fusobacterium 梭杆菌属;Anaerococcus 厌氧球菌属;Clostridium 梭菌属;Ruminococcus 瘤胃球菌属;Staphylococcus 葡萄球菌;Stool 粪便;Cheek 脸颊;Plaque 牙菌斑;Tongue 舌头;Nose 鼻子;Vagina 阴道;Skin 皮肤)

  总的来说,生物体的表型{指一个人可观察到的所有特征}也由其共生体产生,共生可以增加了生物体的能力或改变了生物的表型。因此,表型不仅仅是基因组编码的结果。共生体及其基因是道金斯[8]所说的“扩展表型”的一部分,即在环境中加入的、改变物种表型的一系列元素。例如,人类消化道中就含有大量细菌种类(图5):对我们肠道进行宏基因组分析,结果表明,肠道内包含近100万亿个微生物,是我们自身细胞的十倍!这就是所谓的微生物群。(见人类微生物:我们健康的盟友

   肠道微生物群{生活在动植物宿主的特定环境(称为微生物组)中的所有微生物,包含细菌、酵母菌、真菌、病毒。例如生活在肠道或肠道微生物群中的一组微生物,之前称为“肠道菌群”。}对人类身体的正常运作至关重要,不仅能帮助消化、促进维生素生成,而且在新陈代谢、免疫……或神经系统方面也发挥重要作用。人们怀疑肠道菌群不平衡是一系列病理的根源,例如肥胖、糖尿病、心血管疾病、过敏、炎症性疾病,甚至自闭症[2][7]。人类微生物群并不局限于消化道:国际宏基因组计划已经从生活在口腔、鼻子、阴道或皮肤上的大量共生微生物中发现了基因(图5)。

环境百科全书-生命-宿主与其寄生虫/病原体之间相互作用的微生物调节
图6. 宿主与其寄生虫/病原体之间相互作用的微生物调节。
宿主基因型的作用(由蓝色椭圆表示)和所有影响微生物群组成的环境因素都会影响宿主与其寄生虫/病原体之间的相互作用,特别是通过免疫系统。[来源:改编自格洛斯(Gross)等人。见参考文献[10]](Age 年龄;Food 食物;Social interactions 社会互动;Antibiotics 抗生素;Pathogenic parasites 致病性寄生虫;Microbiotas 微生物群;Immune system 免疫系统;Competition 竞争;Maturation 成熟;modulation Control 调制控制;Genotype 基因型;Virulence 毒性;Resistance 抵抗力)
  微生物群能够调节宿主与其寄生虫/病原体之间的相互作用(图6)。微生物群可以有直接作用(指竞争),也可以通过促进免疫系统的建立、成熟和运作而产生间接作用。通过研究无菌环境{指不含所有腐生或致病细菌的培养物(原核或真核细胞、组织、生物体)。}中饲养的小鼠,我们知道,神经系统的发育甚至行为都在一定程度上受其影响!

  因此,有人提出,与生物学或进化相关的单元不应是生物体,而应是共生体:有人提出,与生物学或进化论相关的单位与其说是生物体,不如说是共生体:我们称其为整体生物体(holobionte),以命名这个与生物相互作用的重要性更为相关的实体。我们以全息生物{指由宿主(植物或动物)及其所有微生物组成的生物单位。}来命名这个实体,是为了让它与生物相互作用的重要性更相关。

4.寄生,一个进化的成功故事

  如果共生关系中的一方发现了如何有效地利用另一方,它就变成了寄生虫。共生和寄生之间确实存在着连续性[5]。寄生虫利用另一个不相关的个体(即宿主)提供的资源,从而损害其利益。与捕食不同,寄生是与宿主的长期相互作用,这种相互作用持续时间与捕捉和消化的时间一样长。然而,从进化的角度来看,可以说捕食是寄生的一种极端形式。有些寄生虫会慢慢杀死宿主。植物寄生真菌(霉菌、蜜环菌、蹄真菌等)就是这种情况,它们在死亡的组织上完成其生命周期。当猎豹抓住一只羚羊时,会进行能量交换,而且只有能量交换。在宿主存活的宿主-寄生虫系统(称为生物营养性寄生)中,相互作用的持续时间则截然不同:两种生物体共同生活,通常一个生物在另一个体内,有时是细胞寄生在细胞内,甚至是基因组寄生在基因组内。每一方的遗传信息在一小部分空间[11]中并列且持续地表达。

  所有生物作为宿主或寄生虫都会受到寄生作用的影响(图7)。在已知物种中,约200万真核生物中有30%被认为是寄生虫[12]。最著名的寄生动物{指一个有机体的所有寄生生物群。}是人类。人体包含179种寄生虫,其中35种似乎是智人[13]特有的。如果考虑超寄生(寄生虫的寄生虫),人体的寄生虫总数还要增加。超寄生是寄生节肢动物和类寄生虫{一种在“宿主”生物体上或体内发育的生物体,分为两个阶段:首先是生物营养的,然后是捕食性的,最终导致宿主死亡。}中普遍存在的现象[[14]。最近的估计表明,病毒数量被严重低估了,而病毒通过将功能转移到新生病毒颗粒来寄生到细胞中。病毒存在于所有生态系统中,是生物体中最丰富、最多样化的遗传实体[15]

环境百科全书-生命-一些寄生生物及其宿主多样性的例子
图7. 部分寄生生物及其宿主多样性的示例
A, 缩头鱼虱(Cymothoa exigua),寄生甲壳类动物,附着在鱼的舌根上,上图是附着在大理石花纹的鱼(细条石颌鲷,Lithognathus mormyrus) 舌部[来源©马可·芬奇(Marco Vinci) (CC BY-SA 3.0),维基共享资源];
B,寄生在鱼盖(比目鱼,Platichthys flesus)上的桡足类角棘球绦虫(Acanthochondria cornuta)的卵袋,袋长约4毫米,[来源:©汉斯·希勒沃特(Hans Hillewaert),维基共享资源]; C,由德洛里欧(1831)制作的版画[16],描绘了一条绦虫(猪带绦虫,Taenia solis)); D.被寄生线虫感染的热带蚂蚁(黑门蚁,Cephalotes atratus)[来源:©史蒂夫·亚诺维克(Steve Yanoviak)/阿肯色大学,维基共享资源]; E,寄生在团藻群落中的轮虫[来源:©米歇尔·德拉鲁(Michel Delarue),生物媒介-巴黎第六大学]; F,蛹虫草(Cordyceps militaris)侵染的中国家蚕害虫柞蚕(柞蚕,Antheraea pernyi)[来源:©郑等人。参考[17]; G,被寄生真菌蝇虫霉(Entomophthora muscae)寄生的粪蝇(黄粪蝇,Scathophaga stercoraria)[来源:©汉斯·希勒沃特(Hans Hillewaert),维基共享资源]; H,被顶点线虫(nematomorphic)寄生的直翅螽斯(Anonconotus orthopter)[来源:©罗杰·德·拉格兰迪埃(Roger de La Grandière)].
  对于进化论者{进化论的支持者相信物种会随着时间的推移而进化}来说,宿主-寄生虫模型提出了无数关于寄生本身、宿主-寄生虫相互作用的进化动力学以及宿主物种进化后果等问题。寄生虫对自由物种世界所起的作用确实是巨大的。在整个进化过程中,从未否认寄生生活方式取得的成功,因为宿主不仅为任何知道如何利用它的生物提供了栖息地和食物,而且还提供了有效的传播途径。过去,研究主要集中在病原体对其宿主繁殖能力和生存的直接影响,而当前的研究则说明了病原体对行为、选择过程和生活史等多种特征的影响。

  与任何生物一样,寄生虫的生物特征也受到其环境施加的选择压力。寄生虫成年阶段的体型是迄今为止最重要的特征,它可以决定其他寿命或生育能力等关键特征的价值。但是,如果生长条件(寄主摄食、种内{描述属于同一物种的个体之间建立的关系的术语。}和种间{描述属于不同物种的个体之间建立的关系的术语。}竞争)不是最佳的,寄生虫可能会调整发育。此外,寄生虫的最大体型仍然受到宿主身上或内部可用空间的限制(图 7)。最后,寄生虫的成年体型通常存在性别二态性{同一物种的雄性和雌性个体之间或多或少的形态差异。}:雌性通常比雄性大得多。

5.寄生周期

  寄生虫一生中为确保其繁殖而在其占据各种生态位宿主、外部环境)寄生虫周期是其生态位转变的结果。许多寄生虫物种利用单一的宿主物种、周期简单,但另一些奇生虫则连续利用多个宿主物种:这允许季节性轮换,或增加感染形式,因为宿主定殖的成功率通常很低。周期的复杂性在进化过程中独立出现了几次。最复杂的寄生周期可以提到血吸虫(Halipegus ovocaudatus)的案例,它的周期内包括4个强制性宿主:软体动物、甲壳类桡足类、蜻蜓幼虫和青蛙。除了这些极特殊情况外,还有两至三个宿主的复杂周期,特别是在蠕虫(helminths){包括各种类型的一般寄生蠕虫的通用术语:蛔虫(线虫)、刺状树干蠕虫(棘头虫——“带刺的”蠕虫)和扁虫(扁虫:这些是线虫和吸虫)。}或锈菌(病原真菌)中。除了简单循环的复杂性外,二次简化的演化过程中也存在复杂循环。

环境百科全书-生命-恶性疟原虫的寄生周期
图8. 恶性疟原虫的寄生周期,疟疾的病原体。
疟原虫周期(见重点)在人类(在肝脏和血液中)和蚊子(在肠道和唾液腺中)中有两个阶段[来源:©埃里克·马歇尔(Eric Maréchal)的方案].(Sexual reproduction 有性繁殖;Anopheles intestine 按蚊肠道;Asexual multiplication 无性繁殖;Human red blood cells 人体红细胞;salivary glands 唾液腺;sporozoites 孢子体;liver 肝;merozoites 裂殖孢子;Red blood cells 红细胞;gametocytes 配子体;digestive tract 消化道;zygote 受精卵;oocyste 卵囊;Plasmodium falciparum 恶性疟原虫)
  图8描述了具有两个宿主的寄生周期,即疟疾的病原体恶性疟原虫(Plasmodium falciparum),它先后感染了按蚊和人类(见恶性疟原虫)。在其生命周期中,疟原虫(Plasmodium)呈现出极其多样的形态。疟原虫(Plasmodium)通过受感染的蚊虫叮咬进入人类后,通过血流迅速地迁移到肝细胞中,并在不引起症状的情况下大量繁殖。有时,这种寄生虫可能以潜伏形式持续存在于肝脏中,导致疟疾在首次感染数年后再次发作。然后,成千上万的寄生虫离开肝细胞、寄生在红细胞中,并在那里繁殖,然后在感染新细胞之前破坏受感染的细胞。按蚊( Anopheles)叮咬病人后,会摄入血液中的雄性和雌性疟原虫(Plasmodium)。疟原虫在按蚊消化道中繁殖,然后通过唾液腺,在以后的叮咬中感染其他人。

  感染疟原虫(Plasmodium)后,蚊子行为就会改变:它们变得更加活跃、更具攻击性并叮咬更多的人,传播的几率增加[2]。这些变化似乎与寄生虫的发育同步,例如,当寄生虫未成熟时蚊子叮咬率降低,当寄生虫达到可传播阶段时,叮咬率增加。一旦进入脊椎动物宿主体内,这些相同的寄生虫似乎能够改变宿主的气味,使它们对蚊虫更具吸引力。改变感染后宿主的行为是寄生虫操纵的一个典型例子[2]

6.寄生虫操纵

  一些寄生虫能够显著改变宿主的生理、形态或行为,从而增加其传播几率。这种利用宿主的策略现在在许多宿主-寄生虫系统{描述远距离生物之间关系分析结果的副词}中都有被描述。受感染宿主的表型{指可以分析的生物体的特征或特点,包含解剖学、生理学、分子或行为特征。}变化通常被认为是扩展表型概念的例证[18]。这些表型变化实际上对应于寄生虫基因的表达以及相应蛋白质对宿主表型的影响。根据这一观点,这些诱导的修饰是寄生虫的适应性改变,而不是宿主的适应性改变

环境百科全书-生命-寄生操纵多样性的一些例子
图9. 不同类型的寄生操纵。
A,瓢虫照顾瓢虫茧蜂(Dinocampus coccinellae)的幼虫。[来源:© BeatWalkerCH (CC BY-SA 3.0),维基共享资源]; B,被真菌弓背蚁僵尸真菌(Ophiocordyceps camponoti-rufipedis)寄生的巴西森林蚂蚁。[来源:©大卫·休斯(David Hughes),宾夕法尼亚州立大学]; C,来自蝴蝶尺蠖蛾的幼虫(Thyrinteina leucocerae)照顾着刻绒茧蜂(Glyptapantel)的蛹[来源:©何塞·利诺-内托(José Lino-Neto) (CC BY 2.5), 维基共享资源]; D,双盘吸虫(Leucochloridium paradoxum)感染了琥珀螺(Succinea putris)蜗牛[来源:© Studyblue 温哥华岛大学]; E,甲壳类蟹奴虫(Sacculina carcini)寄生梭子蟹(Liocarcinus holsatus)[来源:©汉斯·希勒沃特(Hans Hillewaert),维基共享资源].
  图9展示了不同类型的寄生虫操纵。寄生虫经常会操纵宿主来照顾它的后代。因此,寄生小蜂瓢虫茧蜂(Dinocampus coccinellae)的幼虫从宿主瓢虫腹部出来,转化为茧后,瓢虫会照顾并保护这个茧,直到寄生蜂出现(图9A)。刻绒茧蜂(Glyptapanteles)在蝴蝶尺蠖蛾( Thyrinteina leucocerae)的毛虫体内产卵,在卵孵化后毛虫会改变其行为并将卵转化为蛹:毛虫会停止进食、维持静止,并保护蛹免受捕食者的攻击,直到它们孵化(图9C)。有些操纵方式甚至更为极端。弓背蚁僵尸真菌(Ophiocordyceps camponoti-rufipedis)(图 9B)侵入巴西森林蚂蚁后,通过控制蚂蚁“大脑”来操纵它的行为,引导蚂蚁爬到植物顶部,在那里光线、湿度等条件有利于真菌的生长。一旦蚂蚁牢牢附着在茎上,真菌就会杀死它并缓慢生长,产生的孢子很容易扩散。感染了寄生虫双盘吸虫(Leucochloridium paradoxum)的琥珀螺( Succinea putris)蜗牛也采用了类似的策略。双盘吸虫在蜗牛的触角中安家,蜗牛触角将呈现蠕虫的外观和动作,成为鸟类更容易注意到的猎物,且蜗牛的行为也被改变,因为它往往会离开植被的保护。寄生虫的生命周期在鸟类中继续,鸟类粪便使寄生虫卵得以传播(图 9E)。蟹奴子(蟹奴虫,Sacculina carcini)是一种小型蟹类寄生甲壳类动物,它寄生在宿主体内,改变其荷尔蒙平衡并阻止其繁殖,宿主唯一功能是喂养寄生虫(图 9F)。蟹奴虫受精后,螃蟹会像照顾自己的卵一样照顾寄生虫的卵。

  一些寄生虫的操纵会导致宿主出现自杀行为。一个很典型例子是无节线虫{圆柱形的蠕虫,极其细长,平均直径为0.5-2.5毫米,长度为10-70厘米),因为给人的印象是用自己的身体打复杂的结,因此也被称为戈尔迪蠕虫。},其成虫生活在水中,看起来像一种线。宿主通常是一种陆生昆虫,例如无节线虫的幼虫寄生在蚱蜢上(图 7H)。无节线虫成虫必须返回水环境中繁殖。为此,它会操纵宿主的行为,迫使其跳入水中。由于这最后的“溺水”行为,它才能回到它完成生命周期的环境中。然而,这种类型的自杀可能对未受感染的同类动物有益,因为它降低了污染的风险。被蛇形虫草菌(Ophiocordyceps)寄生的蚂蚁正是这种情况(图 9B),它被其同类识别后,被排斥出蚁穴。

  在一些涉及植物的案例中,操纵的确定性更为人所知。它揭示了病原真菌和细菌以及植物寄生线虫{圆形、不分节的蠕虫。有些蠕虫在土壤、水中等过着“自由”的生活,另一些则寄生在真菌、植物或动物体内。}中惊人的趋同机制。植物寄生线虫在根据栖息和进食、导致根部变形,称为虫瘿。这些生物的基因组编码了大量的小分泌蛋白或多肽,这些小分泌蛋白改变了其他宿主蛋白的功能。我们所说的效应蛋白是指这些细胞能够穿透宿主细胞,重组新陈代谢或改变防御反应……有时它们在细胞核水平起作用,并负责改变基因表达。这些机制很可能在其他类型的寄生中也发挥作用:它们甚至存在于菌根真菌中。这表明分泌的多肽可能有助于在互惠共生中观察到的变化,这就再次强调了互惠共生和寄生共生存在相似的机制。

  除了寄生虫操纵的壮观和迷人的性质之外,所涉及的一些病原体造成了许多作物损失,而且还造成严重疾病,包括上述疟疾、登革热{全球热带和亚热带地区的蚊媒病毒感染。会导致流感样综合征,可发展为危及生命的并发症。登革热没有特殊的治疗方法。}、锥虫病{由锥虫寄生虫引起的感染}或利什曼病{如果不治疗,会导致严重致残甚至致命的皮肤或内脏疾病的一种寄生虫病。利什曼病由利什曼原虫属的各种寄生虫引起,通过俗称白蛉的昆虫叮咬传播。}等病媒传播疾病,因此构成了重大的公共卫生问题[19]


参考文献和说明

封面照片:©黄珍妮(Jenny Huang)来自台北 (CC BY 2.0) 通过维基共享资源。

[1] Selosse M.A. (2000). La Symbiose. Vuibert, Paris.

[2] Lefèvre T., Renaud F., Selosse M.-A., Thomas F. (2010). Chapitre 14, Évolution des interactions entre espèces, in F. Thomas, T. Lefèvre & M. Raymond (ed.), Biologie évolutive, p. 555-653. De Boeck, Paris.

[3] Selosse MA, Gilbert A (2011) Des champignons qui dopent les plantes. La Recherche 457, 72-75.

[4] Selosse MA & Gilbert A (2011) Mushrooms that boost plants. Research 457, 72-75.

[5] Cleveland A., Verde E.A. & Lee R.W. (2011) Nutritional exchange in a tropical tripartite symbiosis: direct evidence for the transfer of nutrients from anemonefish to host anemone and zooxanthellae, Marine Biology, 158: 589-602

[6] Corbara B http://www.especes.org/#/1-menage-a-trois/4541755

[7] 豆血红蛋白。结构与血红蛋白非常相似的氧结合蛋白。存在于豆类的根瘤中,它保护酶复合物(固氮酶/氢化酶)免受氧气的影响,氧气会使其失活并构成细菌的氧气储备(有氧活性)。

[8] Dawkins R. (1982) The extended phenotype. Oxford University Press, Oxford.

[9] Morgan X.C., Segata N. & Huttenhower C. (2013) Biodiversity and functional genomics in the human microbiome, Trends Genet. 29, 51–58

[10] Gross R., Vavre F., Heddi A.&Hurst G.D.D., Zchori-Fein E.&Bourtzis K.(2009)Immunity and symbiosis. Molecular Microbiology 3,751-759.

[11] Selosse M.A. (2016) Au delà de l’organisme: l’holobionte. Pour la Science,269,80-84.Combes C.(1995)Interactions durables. Écologie et évolution du parasitisme. Éditions Masson,525p.

[12] From Meeûs T. & Renaud F(2002)Parasites within the new phylogeny of eukaryotes. Trends in Parasitology 18, 247-251.

[13] De Meeûs T., Prugnolle F. & Agnew P. (2009) Asexual reproduction in infectious diseases. In Lost Sex, Schön I, Martens K & van Dijk P eds, Springer, NY, p. 517-533.

[14] 寄生生物:一种在“宿主”生物体上或体内发育的生物,分为两个阶段:首先是生物营养性的,然后是捕食性的,导致宿主最终死亡。

[15] Hamilton G. (2008) Welcome to the virosphere. New Scientist 199, 38-41.

[16] 来源http://www.archive.org/stream/traitzoologiqu00brem#page/n613/mode/2up

[17] Zheng et al (2011) Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biology 12: R116

[18] Dawkins R. (1976) The selfish gene. Oxford University Press.

[19] Lefèvre T.&Thomas F(2008)Behind the scene, something else is pulling the strings: Emphasizing parasitic manipulation in vector-borne diseases. Infection, Genetics and Evolution 8,504-519.


环境百科全书由环境和能源百科全书协会出版 (www.a3e.fr),该协会与格勒诺布尔阿尔卑斯大学和格勒诺布尔INP有合同关系,并由法国科学院赞助。

引用这篇文章: SELOSSE Marc-André, JOYARD Jacques (2024年3月12日), 共生与寄生, 环境百科全书,咨询于 2024年9月14日 [在线ISSN 2555-0950]网址: https://www.encyclopedie-environnement.org/zh/vivant-zh/symbiosis-and-parasitism/.

环境百科全书中的文章是根据知识共享BY-NC-SA许可条款提供的,该许可授权复制的条件是:引用来源,不作商业使用,共享相同的初始条件,并且在每次重复使用或分发时复制知识共享BY-NC-SA许可声明。

Symbiosis and parasitism

symbiose - parasitism

Living organisms are permanently closely associated with each other. Their interactions can be classified according to the level of association of the organisms involved, the duration of these interactions and their beneficial (or not) impact on both partners. All intermediate situations exist, forming a true continuum from free organisms that need other organisms to feed themselves to parasites which life cycle is entirely based on specific hosts. Symbiosis and parasitism illustrate -beyond the extreme diversity of situations- that interactions are in all cases essential to partners’ lives, and are often at the origin of the emergence of new properties for the systems thus constituted. This is the case, for example, of microbiota associated with each of the living organisms. But it is also the case for organisms modified by parasites that infect them and even disturb the behaviour of infected hosts compared to healthy individuals.

1. Some definitions

The network of interactions and interdependencies that exists between billions of organisms within the biosphereA living space where all the Earth’s ecosystems are located, corresponding to the thin layer of the atmosphere, hydrosphere and lithosphere where life is present. This dynamic living space is maintained by an energy supply (mainly due to the sun) and the metabolism of living organisms in interaction with their environment.; a level of organization that is founder of the concept of biodiversity (read What is biodiversity?). These interactions are most often of mutual benefit and their role in the physiology and adaptation of organisms to the environment is essential. For example, many animals cannot digest without the help of bacteria in their digestive tract, most plants can only use the soil with fungi colonizing their roots, which they feed in return [1].

Figure 1. Relationship between symbiosis and mutualism. [Source: From Lefèvre et al.; see ref. [2].

But this is not always the case: interactions between two organisms can be classified according to their beneficial, harmful or neutral effect for both partners. Thus, one can distinguish interactions that are beneficial for one partner and harmful for the other (predation, parasitism), beneficial for one and neutral for the other (commensalism) and mutually beneficial interactions (mutualism). In addition, all intermediate situations exist, in a true continuum of interaction types (Figure 1) [2]. They can also be classified according to their instantaneous (predation) or sustainable nature (parasitism, mutualism, etc.), as well as according to the degree of association between the partners [2]. Etymologically, the term symbiosis refers to “the common life of organisms of distinct species”. This broad definition refers to a sustainable coexistence, involving all or part of the life cycle of the two organisms, regardless of the exchanges between them. A more restrictive definition reserves the term symbiosis for sustainable and mutualist coexistence (see red part in Figure 1).

2. Mutualist symbiosis

Encyclopédie environnement - parasites - symbioses mutualistes impliquant des champignons - symbiosis
Figure 2. Examples of mutualist symbiosis involving fungi. A, Symbiosis between a green algae and an ascomycete fungus in the lichen Xanthoria elegans [Source: © Jason Hollinger @Mushroom Observer (CC BY-SA 3.0) via Creative Commons]; B, Mycelium (white) of ectomycorhizian fungus associated with the (brown) roots of Picea glauca [© André-Ph. D. Picard (CC BY-SA 3.0) via Wikimedia Commons]; C, Neottia nidus-avis, a non-chlorophyllous plant, exploits the carbon of mycorrhizal fungi and therefore of other plants [Source: © Marc-André Selosse]; D, Neotyphodium coenophialum, an endosymbiotic fungus living in tall fescue (Festuca arundinacea) that it protects from herbivores by secreting an alkaloid toxic for herbivores. [http://betterknowamicrobe.tumblr.com/post/75909408589/neotyphodium-coenophialum]; E. Growing mushrooms from a colony of cephalotic Atta cephalots, microscopic fungi form a white mold that grows on leaf pieces brought by ants. [Source: © Alex Wild/alexanderwild.com, with permission].
The benefits of symbiosis are often trophicAdjective related to the nutrition of an individual, a living tissue. Refers to the relationships between species (predator-prey relationships in particular), the cycles and flows of energy and nutrients within ecosystems between producers, consumers and decomposers. The basic level of this network is that of autotrophic primary production, above this level, each link in a food chain corresponds to a trophic level., when one of the partners accesses a resource of which the other is deprived, or which is limiting it [2]. Many symbiosis thus involve autotrophic organismsOrganism that produce organic matter from the reduction of inorganic matter and an external energy source: light (photoautotrophic organism) or chemical reactions (chemoautotrophic organism). : in lichensOrganisms resulting from a symbiosis between a fungus and an alga. Algae synthesizes organic matter from carbon dioxide (CO2) in the air and solar radiation (photosynthesis). In return, the fungus removes from the environment the water and mineral salts essential for licenical symbiosis (Figure 2A) or mycorrhizaeA symbiotic association between the roots of plants and soil fungi. They affect more than 95% of terrestrial plants. They give plants better access to soil nutrients and help them better resist environmental stresses. (Figure 2B), a photosynthetic partner -algae or plant respectively- feeds a fungus that in turn exploits water and mineral salts from the environment for itself and its partner. HeterotrophicQualifies organisms (animals, fungi, some plants, prokaryotes) unable to synthesize their components themselves from simple mineral molecules (CO2…) and which therefore use sources of exogenous organic matter initially produced by autotrophic organisms. organisms also establish trophic links. For example, bird’s-nest orchid (Neottia nidus-avis, Figure 2C) or pinesap (Monotropa hypopitys) are non-chlorophyllous plants that reverse the usual mycorrhizal relationship by exploiting the carbon of their mycorrhizal fungi, thus, indirectly, that of other neighboring plants related to these fungi [3]. Similarly, several groups of colonial insects, ants and termites, have established symbiosis with fungi that they feed in their nests by collecting plant biomass outside the nest (Figure 2D). These insects consume part of the fungus mycelium, which they can digest, while they are unable to digest plant biomass (lignin in particular).

Encyclopédie environnement - parasites - organismes symbiotiques d’un récif corallien - symbiotic organisms of coral reef
Figure 3. Some symbiotic organisms of a coral reef. A, Clown fish Amphiprion ocellaris in a sea anemone [Source: © Nick Hobgood (CC BY-SA 3.0) via Wikimedia Commons]; B, Symbiotic shrimp Periclimenes yucatanicus in an anemone [Source: © Ilyes Lazlo (CC BY 2.0) via Wikimedia Commons]; C, Zooxantelle of the symbiotic Symbiodinium type of coral [Source: © Penn State/Flickr (CC BY-NC 2.0)]; D, Pygmy seahorse Hippocampus satomiae attached to coral [Source: © John Sear (CC BY 3.0) via Wikicommons]
EndosymbioticCharacterizes a symbiotic association where one of the organisms, called the endosymbiont, is present within the cells of its host. bacteria are very common in insects, and complement their often specialized nutrition [5]. For example, sap-sucking hemiptera suffer from a deficiency of essential amino acids, compensated by endosymbiotic bacteria that synthesize them. Symbiosis can protect against environmental stresses, especially when one partner lives inside the other. In mycorrhizae, the fungus is often protected in the root (where it stores its reserves, in the case of some endomycorrhizae), but it can also protect the root when it forms a sleeve around the root (ectomycorrhizae). A fungus of the genus Neotyphodium (Figure 2E) lives in symbiosis within the tall fescue (Festuca arundinacea) and protects it from herbivores by secreting alkaloids that are toxic to insects and mammals. This fungus spreads from generation to generation by colonizing the seeds [4]. Protection is sometimes the only benefit obtained, as in the cleaning symbiosis of coral ecosystems, where one small animal (fish or shrimp) cleans the skin and/or cavities of the other, eliminating debris and small parasites (Figure 3). However, some anemones in these reefs grow faster, have a greater chance of survival and have a higher density of Zooxanthellae (unicellular symbiotic algae living within sea anemones) when they are visited by fish. This increase in anemone performance is the result of a transfer of nutrients from fish to anemone, which uses the fish’s urine as a source of nitrogen and phosphate [5]. These observations show that clownfish contribute to feeding the sea anemone and that their symbiotic algae benefit from this supply [6].

Other benefits depend on the ability of one of the partners to move (pollination by bees, seed dispersal by ants or birds). On the balance sheet, similarly functioning associations have been set up several times during the evolution. Such convergences are illustrated by the diversity of insects cultivating fungi (ants, termites, beetles) and eukaryotesUnicellular or multicellular organisms whose cells have a nucleus and organelles (endoplasmic reticulum, Golgi apparatus, various plasters, mitochondria, etc.) delimited by membranes. Eukaryotes are, together with bacteria and archaea, one of the three groups of living organisms.  that harbour photosynthetic algae in their cells (such as the appearance of chloroplastsOrganites of the cytoplasm of photosynthetic eukaryotic cells (plants, algae). As a site of photosynthesis, chloroplasts produce O2 oxygen and play an essential role in the carbon cycle: they use light energy to fix CO2 and synthesize organic matter. They are thus responsible for the autotrophy of plants. Chloroplasts are the result of the endosymbiosis of a photosynthetic prokaryote (cyanobacterium type) in a eukaryotic cell, about 1.5 billion years ago. in the eukaryotic cell) (see Symbiosis and evolution). All the organizations have had the opportunity to contract, during their evolution, one or more mutualist symbiosis(s). This is particularly true for large multicellular organisms, which constitute an ecosystem for microscopic organisms. The rhizosphere (the soil surrounding the root of plants) or the digestive tract of animals are thus major microbial niches, populated by thousands of species for each individual host, some of whose occupants are favourable to the host. As a result, each organism has a procession of symbiotes, especially developed in multicellular organisms.

3. Emerging symbiosis properties

Figure 4. Legume nodules. A, Nodosities due to Sinorhizobium meliloti bacteria on a Medicago root (note the pink color, due to an oxygen-carrying protein, leghemoglobin, Lb); B, View of a section of a nodosity due to Sinorhizobium meliloti bacteria on a Medicago root ; C, Transmission electron microscopy showing symbiotic bacteroids (b) (Bradyrhyzobium japonicum) in soybean root nodules, surrounded by an endocytosis membrane (white arrow); D, Nodosities metabolism, bacteroids ensure nitrogen fixation through a controlled supply of oxygen and carbonaceous substrates from the plant. A & B: [Source: © Ninjatacoshell (CC BY-SA 3.0) via Wikimedia Commons]. C: [Source: © Louisa Howard – Dartmouth Electron Microscope Facility, via Wikimedia Commons].
Further to the addition of partners’ capacities, mutualistic symbiosis expresses certain properties that separate partners do not have. First, at the morphological level, symbiosis creates structures that do not exist outside the association: this is the case of nodules (Figure 4A and B), organs induced by bacterial colonization whose anatomy differs from the roots (frequent absence of terminal meristem, vessels conducting peripheral sap, etc.). The structure of bacteria is also modified by living in the cell: loss of flagella, wall and increased size (as in nodules, Figure 4C). This modified morphology is called “bacteroids” due to small proteins injected into the bacteria by the plant.

Other emergences are functional. In the example of nodules (Figure 4D), the bacteroid uses energy obtained from its respiration to reduce  -thanks to the nitrogenaseEnzyme complex specific to certain prokaryotes that catalyzes the complete sequence of reactions during which the reduction of dinitrogen N2 leads to the formation of ammonia NH3. This reaction is accompanied by hydrogenation.– the atmospheric nitrogen N2 to ammonium NH3, which serves as a source of nitrogen for the plant (and bacteroid). Conversely, the plant provides carbon and oxygen supply. Oxygen is required for respiration, but nitrogenase is inactivated by oxygen: this contradiction explains why a free rhizobiumAerobic soil bacterium that can create symbiosis with legumes. These bacteria are found in nodules where they will fix and reduce atmospheric nitrogen, which can then be assimilated by the plant. In exchange plants provide carbonaceous substrates to bacteria. in the soil is unable to fix nitrogen. On the other hand, in the nodosity, oxygen does not diffuse freely, but is captured by a protein of the host cell, leghaemoglobin [7]. Located around the bacteroid, leghaemoglobin protects the nitrogenase from the inactivating effects of the oxygen and provides an oxygen reserve for bacteria respiration. Nitrogen fixation can therefore only be achieved within in the nodosity.

Many other functional traits are induced by symbiosis, such as some protective effects that rely on the induction of partner defences, tolerated by the symbiont but harmful to pathogens. Mycorrhizal fungi, for example, induce the accumulation of protective tannins at the root level, which are responsible for inducing an increased level of defence and reactivity throughout the plant, including the aerial parts. Thus, the mycorrhized plant reacts faster and more strongly to an herbivore or parasite than a non-mycorrhized control plant. In lichens, algae induce the fungus to synthesize secondary metabolites that have a protective role against strong light and herbivores.

Encyclopédie environnement - parasites - Représentation de la diversité du microbiote humain - human microbiome
Figure 5. Representation of the diversity of the human microbiome. In the centre is the phylogenetic tree representing the species of the microbiota. On the periphery, representation of specific microbiota (gut, stomach, mouth, vagina, etc.). [Source: Scheme reproduced from Morgan et al (2013); See ref. [9].]
Overall, the phenotypeAll the observable characteristics of an individual. of the organism therefore also results from its symbionts, either by adding their capacities or because they modify it. The phenotype is therefore more than what the genome encodes. Symbionts and their genes are part of what Dawkins [8] calls an “extended phenotype”, that is, the set of elements recruited into the environment that modify the phenotype of a species. In humans, for example, the digestive tract contains a large number of bacterial species (Figure 5): metagenomic analysis applied to our intestine has shown that it contains nearly 100,000 billion microorganisms, ten times more than our own cells! This is called the microbiota (see Human microbiotas: allies for our health).

The gut microbiotaAll microorganisms (bacteria, yeasts, fungi, viruses) living in a specific environment (called microbiome) in a host (animal or plant). An important example is the set of microorganisms living in the intestine or intestinal microbiota, formerly called “intestinal flora”. is essential for the proper functioning of its human host, not only in terms of digestion or vitamin production, of course, but also for metabolism, immunity… or the nervous system. The imbalances in the intestinal flora are now suspected of being at the origin of a series of pathologies: obesity, diabetes, cardiovascular diseases, allergies, inflammatory diseases, even autism [2],[7]. The human microbiota is not limited to the digestive tract: international metagenomic programs have identified genes from a large number of symbiotic microorganisms living in the mouth, nose, vagina or on the skin (Figure 5).

Figure 6. Microbial modulation of interactions between a host and its parasites/pathogens. The action of the host genotype (represented by the blue ellipse) and all environmental factors that affect the composition of the microbiota will affect the interaction between the host and its parasites/pathogens, particularly through the immune system. [Source: Adapted from Gross et al. [See ref. 10]]
The microbiota is able to modulate the interactions between a host and its parasites/pathogens (Figure 6). The action of the microbiota can be direct (competition) or indirect through its action on the establishment, maturation and functioning of the immune system. We know, by studying mice raised in an axenicCaracterise a culture (of prokaryotic or eukaryotic cells, tissues, living organisms) free of all saprophytic or pathogenic germs. environment, that the development of the nervous system and even the behaviour are partly influenced by it!

It has therefore been proposed that the unit relevant for biology or evolution should be less the organism than the symbiotic procession: we speak of holobiontemeans the biological unit composed of the host (plant or animal) and all its microorganisms. to name this entity more relevant to the importance of biotic interactions [11].

4. Parasitism, an evolutionary success story

If one of the partners in the symbiosis discovers how to use the other effectively, it becomes a parasite. There is indeed a continuum between symbiosis and parasitism [5]. The parasite exploits resources provided by another unrelated individual, the host, to the detriment of the latter. Parasitism is a long-lasting interaction with a host, unlike predation, where the interaction lasts only as long as the time of capture and digestion. However, from an evolutionary point of view, it can be said that predation is only an extreme form of parasitism. There are parasites that slowly kill their host. This is the case of plant parasitic fungi (Mildew, Armillaries, Hoof fungus, etc…) that complete their life cycle on dead tissues. When a cheetah grabs an antelope, there is an exchange of energy and only energy. In host parasite systems where the host survives (referred to as biotrophic parasitism), the duration of the interaction is quite different: the two organisms then live together, often one in the other, sometimes cell in cell or even genome within genome. The genetic information of each partner is expressed side by side and durably in a tiny portion of space [11].

All living beings are affected by parasitism as hosts or parasites (Figure 7). Among the known species, 30% of the approximately 2 million eukaryotic species are thought to be parasites [12]. The best known parasito-faunaAll the parasitic fauna of an organism. is that of man. It consists of 179 species of parasites, 35 of which appear to be specific to Homo sapiens [13]. This image can be increased by hyperparasitism (parasite’s parasites), a widespread phenomenon in parasitic arthropods and parasitoidsAn organism that develops on or in a “host” organism in a two-phase process: it is first biotrophic and then predatory, leading to the final death of the host. [14]. Recent estimates suggest that the world of viruses, which parasitize cells by diverting their functioning to the production of new viral particles, has been profoundly underestimated. They are present in all ecosystems and would constitute the most abundant and diversified genetic entities in living organisms [15].

For evolutionistsPartisans of evolutionism, who believe that species evolve over time,, host-parasite models raise countless questions about parasitism itself, the evolutionary dynamics of their interactions, and the evolutionary consequences on host species. The role played by parasites on the world of free species is indeed enormous. The success of the parasitic lifestyle has never been denied throughout the evolutionary process because a host offers, to any organism that knows how to exploit it, not only habitat and food but also an effective means of dispersal. While in the past, research has focused on the direct effects of pathogens on the fertility and survival of their hosts, current research illustrates consequences on such diverse traits as behaviour, selection processes and life history, to name but a few.

Encyclopédie environnement - parasites -diversité des organismes parasites - parasitic organisms
Figure 7. Some examples showing the diversity of parasitic organisms and their host. A, Cymothoa exigua, parasitic crustacean, it attaches itself to the base of the tongue of a fish, here a marbled one (Lithognathus mormyrus) [Source: © Marco Vinci (CC BY-SA 3.0) via Wikimedia Commons]; B, Egg bags of the parasitic copepod Acanthochondria cornuta on the lid of a fish (Platichthys flesus), the length of the bags is about 4 mm, [Source: © Hans Hillewaert, via Wikimedia Commons]; C, Engraving made by Delorieux (1831) [see ref. 16] representing a tapeworm (Taenia solis); D. Tropical ant (Cephalotes atratus) infected by a parasitic nematode [Source: © Steve Yanoviak/University of Arkansas via Wikimedia Commons]; E, Rotifer parasitizing a volvox colony [Source: © Michel Delarue, BioMedia-UPMC ]; F, Chinese silkworm pest Tussah (Antheraea pernyi) colonized by Cordyceps militaris [Source: © Zheng et al. ref. 17]; G, Scatophagus of manure (Scathophaga stercoraria) colonized by the parasitic fungus Entomophthora muscae [Source: © Hans Hillewaert via Wikimedia Commons]; H, Anonconotus orthopter parasitized by a nematomorphic vertex [Source: © Roger de La Grandière].
As for any living organism, the biological traits of parasites are subjected to selection pressures exerted by their environment. Body size in the adult stage is by far the most important trait, since it can determine the value of other key traits (longevity or fertility). But parasites are likely to adjust their development if growth conditions (host feeding, intraspecificTerm that describes the relationships that are established between individuals belonging to the same species. and interspecificTerm that describes the relationships that are established between individuals belonging to different species. competition) are not optimal. In addition, the maximum size of a pest remains limited by the space available on or within the host (Figure 7). Finally, there is generally a sexual dimorphismSet of morphological differences more or less marked between male and female individuals of the same species. in the adult size of parasites: females are often much larger than males.

5. Parasitic cycles

The parasite cycle is the result of the transformations undergone by a parasite during its lifetime to ensure its reproduction, in the various ecological niches it occupies: host(s), external environment. While many parasite species have simple cycles, exploiting a single host species, others successively exploit several host species: this allows seasonal relays, or to multiply infectious forms, because the success rate of host colonization is often low. The complexity of the cycles has appeared several times independently during the evolution. Among the most complex records, we can mention the case of the trematode Halipegus ovocaudatus whose cycle includes 4 obligatory hosts: a mollusc, a crustacean copepod, a dragonfly larva and a frog. In addition to these extreme situations, complex cycles with two or three hosts are found, particularly in helminthsGeneric term that includes various types of worms that are generally parasitic: roundworms (nematodes), thorny trunk worms (acanthocephalus – “thorny-headed” worms) and flatworms (plathelminths : these are codes and trematodes). or rust (pathogenic fungi). In addition to the complexity of simple cycles, there are also complex cycles during the evolution of secondary simplifications.

Figure 8. Parasitic cycle of Plasmodium falciparum, causal agent of Malaria. The plasmodium cycle (cf. focus) has two phases in humans (in liver and blood) and in mosquitoes (in the intestine and salivary glands); [Source: scheme by © Eric Maréchal].
Figure 8 describes the example of a parasitic cycle with two hosts, the causative agent of Malaria, Plasmodium falciparum which successively infects an Anopheles mosquito and humans (see Focus Plasmodium falciparum). During its life cycle, Plasmodium presents extremely varied forms. After being introduced into humans via an infected mosquito bite, Plasmodium migrates very rapidly into liver cells via the bloodstream and multiplies intensely without causing symptoms. In some cases, the parasite may persist in the liver in a latent form, causing recurrences of malaria attacks years after the first infection. Then, the thousands of parasites formed leave the liver cells and colonize the red blood cells where they multiply, then destroy the infected cells before infecting new ones. By biting a sick person, an Anopheles mosquito ingests male and female forms of Plasmodium present in the blood. The parasites reproduce in the insect’s digestive tract, and then pass through its salivary glands, from where they can infect other people at a future bite.

When infected with plasmodium, mosquitoes change their behaviour: they become more active, more aggressive and bite more people, thus increasing their probability of transmission [2]. These changes seem to be synchronized with the development of the parasite (e.g. decrease in mosquito bite rate when the parasite is immature, and increase when the parasite has reached the transmissible stage). Once in the vertebrate host, these same parasites seem to be able to modify the odours of the hosts to make them more attractive to mosquito vectors. This change in host behaviour after infection is a characteristic example of parasitic manipulation [2].

6. Parasitic manipulations

Some parasites are capable of significantly modifying the physiology, morphology or behaviour of their host with the consequence of increasing their probability of transmission. This host exploitation strategy is now described in many host parasite systems phylogeneticallyAdverb describing the result of an analysis of the relationship relationships between distant living things. distant. Phenotypic Characterize a trait or character of a living organism (anatomical, physiological, molecular or behavioural aspects), which can be analyzed. changes in infected hosts are generally considered an illustration of the extended phenotype concept [18]. These phenotypic changes actually correspond to the expression of the parasite’s genes and the effect of the corresponding proteins on the host’s phenotype. According to this idea, these induced modifications are adaptive for the parasite and not for the host.

diversité des manipulations parasitaires - parasitic manipulations
Figure 9. Some examples of the diversity of parasitic manipulations. A, Ladybird caring for the larvae of the wasp Dinocampus coccinellae [Source: © BeatWalkerCH (CC BY-SA 3.0) via Wikimedia Commons]; B, Brazilian Forest Ant parasitized by the fungus Ophiocordyceps camponoti-rufipedis [Source: © David Hughes, Penn State University] ; C, Carterpillar from the butterfly Thyrinteina leucocerae caring for the pupae of the Glyptapantel wasp [Source: © José Lino-Neto (CC BY 2.5) via Wikimedia Commons]; D, Leucochloridium paradoxum infecting the snail Succinea putris [Source: © Studyblue Vancouver Island University]; E, Crustacean Sacculina carcini parasitizing crab Liocarcinus holsatus [Source: © Hans Hillewaert via Wikimedia Commons].
Figure 9 presents some examples of the diversity of parasitic manipulation. The parasite will often manipulate the host to take care of its offspring. Thus, after the larvae of the parasitic wasp Dinocampus coccinellae emerged from the abdomen of the parasitized ladybird, then transformed into a cocoon, the ladybird will take care of it and protect the cocoon until the wasp emerges (Figure 9A). The Glyptapanteles wasp lays eggs inside the caterpillar of the butterfly Thyrinteina leucocerae, which will change its behaviour after the eggs hatch and transform them into pupae: it stops feeding, becomes immobile, and protects the pupae from predators until they hatch (Figure 9C). Some manipulations are even more extreme. By invading an ant in the Brazilian forest, the fungus Ophiocordyceps camponoti-rufipedis (Figure 9B) manipulates its behaviour by taking control of its “brain”, leading the ant to climb to the top of a plant where conditions (light, humidity) are favourable to the fungus’ development. Once the ant is firmly attached to the stem, the fungus kills it and grows slowly: the spores produced are then easily dispersed. A somewhat similar strategy is being implemented for the snail Succinea putris infected with the parasite Leucochloridium paradoxum. The latter is housed in the snail’s antennas, which will take on the appearance and movements of a worm, becoming a prey that is all the more noticeable for birds as the snail’s behaviour is also modified because it tends to leave the protection of vegetation. The life cycle of the parasite continues in the bird whose droppings allow the spread of parasite eggs (Figure 9E). Sacculin (Sacculina carcini), a small crab parasite crustacean, colonizes its host, alters its hormonal balance and prevents it from reproducing, its only function being to feed the parasite (Figure 9F). After the sacculin has been fertilized, the crab will take care of the parasite’s eggs as if they were its own..

Some parasite manipulations lead the host to suicidal behaviour. A well described case is that of non-segmented  nematomorphsWorms with cylindrical bodies, extremely long and thin (on average from 0.5 to 2.5 mm in diameter for 10 to 70 cm in length). Also called Gordian worms because of the impression they give of making complicated knots with their bodies. worms, whose adult form lives in water and looks like a kind of thread. The host is usually a terrestrial insect, such as a grasshopper (Figure 7H) that hosts the larval form. The adult worm must return to the aquatic environment to reproduce. To do this, it manipulates the host’s behaviour, forcing it to jump into the water. Thanks to this final drowning, he can then return to the environment in which he completes his life cycle. However, this type of suicidal can be beneficial to noninfected animals of the same species, as it reduces the risk of contamination. This is the case of the ant parasitized by Ophiocordyceps (Figure 9B), which is then recognized as such and rejected from the anthill by its congeners.

In a few cases concerning plants, the determinism of handling is a little better known. It reveals a surprisingly convergent mechanism in pathogenic fungi and bacteria, but also in plant-parasitic nematodesRound, non-segmented worms. Some lead a “free” life (in soil, water, etc.). Others have a parasitic life, within fungal, plant or animal organisms.. They cause root deformations where they take shelter and feed, called galls. The genomes of these organisms encode a multitude of small secreted proteins (or peptides), which modify the functioning of other host proteins. We talk about effectors: some penetrate the host cells, and reorganize the metabolism or alter the defense reactions… Sometimes they act at the level of the cell nucleus and are responsible for changes in gene expression. It is likely that these mechanisms also play a role in other types of parasitism: they are even found in mycorrhizal fungi. This suggests that secreted peptides could contribute to the changes observed in mutualist symbiosis – again highlighting the existence of similarities in mechanisms between mutualist and parasitic symbiosis.

Beyond the spectacular and fascinating nature of parasitic manipulation, some of the pathogens involved are responsible for many crop losses, but also for serious diseases, including vector-borne diseases such as malaria mentioned above, dengueMosquito-borne viral infection in tropical and subtropical regions around the world. Causes a flu-like syndrome that can progress to life-threatening complications. There is no specific treatment for dengue fever,, trypanosomiasisInfections caused by trypanosome parasites, or leishmaniasisParasitic diseases causing very disabling or even fatal skin or visceral diseases if not treated. They are caused by various parasites of the genus Leishmania, transmitted by the bite of insects commonly known as sandflies., and thus represent major public health problems [19].

 


References and notes

Cover photo: © Jenny Huang from Taipeh (CC BY 2.0) via Wikimedia Commons.

[1] Selosse M.A. (2000). La Symbiose. Vuibert, Paris.

[2] Lefèvre T., Renaud F., Selosse M.-A., Thomas F. (2010). Chapitre 14, Évolution des interactions entre espèces, in F. Thomas, T. Lefèvre & M. Raymond (ed.), Biologie évolutive, p. 555-653. De Boeck, Paris.

[3] Selosse MA, Gilbert A (2011) Des champignons qui dopent les plantes. La Recherche 457, 72-75.

[4] Selosse MA & Gilbert A (2011) Mushrooms that boost plants. Research 457, 72-75.

[5] Cleveland A., Verde E.A. & Lee R.W. (2011) Nutritional exchange in a tropical tripartite symbiosis: direct evidence for the transfer of nutrients from anemonefish to host anemone and zooxanthellae, Marine Biology, 158: 589-602

[6] Corbara B http://www.especes.org/#/1-menage-a-trois/4541755

[7] Leghaemoglobin. Oxygen binding protein with a structure very similar to blood hemoglobin. Present in the nodules of legumes, it protects the enzymatic complex (nitrogenase/hydrogenase) from the effects of oxygen which inactivates it and constitutes a reserve of oxygen for bacteria (aerobic activity).

[8] Dawkins R. (1982) The extended phenotype. Oxford University Press, Oxford.

[9] Morgan X.C., Segata N. & Huttenhower C. (2013) Biodiversity and functional genomics in the human microbiome, Trends Genet. 29, 51–58

[10] Gross R., Vavre F., Heddi A. & Hurst G.D.D., Zchori-Fein E. &Bourtzis K. (2009) Immunity and symbiosis. Molecular Microbiology 3, 751-759.

[11] Selosse M.A. (2016) Au delà de l’organisme : l’holobionte. Pour la Science, 269, 80-84.

[11] Combes C. (1995) Interactions durables. Écologie et évolution du parasitisme. Éditions Masson, 525 p.

[12] From Meeûs T. & Renaud F. (2002) Parasites within the new phylogeny of eukaryotes. Trends in Parasitology 18, 247-251.

[13] De Meeûs T., Prugnolle F. & Agnew P. (2009) Asexual reproduction in infectious diseases. In Lost Sex, Schön I, Martens K & van Dijk P eds, Springer, NY, p. 517-533.

[14] Parasitoid: an organism that develops on or in a “host” organism in a two-phase process: it is first biotrophic and then predatory, leading to the final death of the host.

[15] Hamilton G. (2008) Welcome to the virosphere. New Scientist 199, 38-41.

[16] Source http://www.archive.org/stream/traitzoologiqu00brem#page/n613/mode/2up

[17] Zheng et al (2011) Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biology 12: R116

[18] Dawkins R. (1976) The selfish gene. Oxford University Press.

[19] Lefèvre T. & Thomas F. (2008) Behind the scene, something else is pulling the strings: Emphasizing parasitic manipulation in vector-borne diseases. Infection, Genetics and Evolution 8, 504-519.


环境百科全书由环境和能源百科全书协会出版 (www.a3e.fr),该协会与格勒诺布尔阿尔卑斯大学和格勒诺布尔INP有合同关系,并由法国科学院赞助。

引用这篇文章: SELOSSE Marc-André, JOYARD Jacques (2022年2月11日), Symbiosis and parasitism, 环境百科全书,咨询于 2024年9月14日 [在线ISSN 2555-0950]网址: https://www.encyclopedie-environnement.org/en/life/symbiosis-and-parasitism/.

环境百科全书中的文章是根据知识共享BY-NC-SA许可条款提供的,该许可授权复制的条件是:引用来源,不作商业使用,共享相同的初始条件,并且在每次重复使用或分发时复制知识共享BY-NC-SA许可声明。