亚马孙:持续进化的巨型生态系统

  亚马孙河地区是仅次于西伯利亚森林的世界第二大森林所在地,但在生物多样性方面却居世界第一。赤道横穿该地区,区域气候“温暖湿润”。虽受季节节律(旱季、雨季)影响,但森林总保持绿色(常绿)。包括世界第一大河——亚马孙河在内的广阔水网为其提供灌溉。从当地到全球,这一独特而复杂的区域都是许多环境、经济和社会问题的核心,涉及的问题是如此之多,以至于科学研究都投入了巨大的精力[1]。尽管如此,我们对它的了解仍然非常有限。这片森林也成为或多或少一些奇幻故事的主题:《黄金国》(Eldorado)、《绿色地狱》(Green Hell)、《翡翠森林》(emerald forest)、《地球之肺》(lung of the planet);它曾庇护着与世隔绝的人们,可怕的美洲印第安人,有时还有食人族,但事实上,他们常常是受害者,而如今被却视为和平爱好者和生态学家……人们的认知并不都是错的,但需要思考:关于这片森林,我们知道什么?我们需要获得哪些知识以及如何获得?如何利用并补充这些知识,以在这种环境下用最佳方式做出决定和采取行动?这样做有什么好处?这里的居民未来如何?

  亚马孙森林生态系统温室气体(GHGs)的调节中发挥着全球性的作用,同时也是生物多样性的宝库。此外,该生态系统蕴含的资源、居住在其中的人口及它引发的关注,使其也成为经济学、人类学和社会学的研究对象。该生态系统分布在九个国家,它的未来取决于多种政策,包括非亚马孙区域机构制定的政策。生物气候的变化可能改变其功能。人类活动可以改变其结构:从小块地的砍伐到整片区域的滥砍滥伐,或在更细微层面上的区域性改变,例如“有用”物种的增加。我们对它们的描绘和从中产生的想法,有时与现实相去甚远,但发挥着决定性作用,特别是在政治和技术决策方面。最后,自发的生物物理和生态过程使其具有高度随机的结构。例如,植物种子,尤其是树木种子,通过流体、空气和水传播,其流动通常是紊流(turbulent),或通过动物(鸟类、哺乳动物)传播,它们的运动大多是变化无常的。

1. 亚马孙森林:我们讨论的是什么?

图1. 亚马孙河的部分地理和生物气候边界。森林区域为深绿色。地图参考《环球百科全书》。[来源:Alain Pavé & Gaëlle Fornet, 2010,见参考文献3]
(图中,右上赤道上标注“厄瓜多尔(Ecuador)”,有误,应为“赤道(equator)”;“Approximate contour of the Great Amazon”译为“广阔亚马孙的大致轮廓”——校订者注)

  “森林”一词,指的是树木茂密并占据一定陆地空间的生态系统。根据其所处的生物气候条件,森林分为不同类型。从而,我们可以区分北方针叶林、温带森林、地中海森林和热带森林。此外,还定义了森林的亚类,如温带或热带干旱和湿润森林。因此,亚马孙森林属于“热带湿润林”类型。

  除了这些一般特征,在该生态系统获取的数据表现出时空的显著变异。这些变异通常是由于研究人员使用的方法和技术差别引起的。在这些计量学的变化之外,有必要加上影响生态系统动力学的生物气候和生态过程引发的变异性。人类活动也起到重要作用,在过去非常轻微和不易察觉的行为,现在可能是残忍的:大规模砍树毁林,随后焚烧。

1.1. 一片巨大的赤道空间

图2. 亚马孙森林中一棵树的典型特征,展现了树的上层(树冠)的种群密度:附生植物、袋状鸟巢(在该图中是腊肠树属树上黄腰酋长鹂(Casicus cela)的巢)。[来源:图片 © Alain Pavé]

  亚马孙森林[2]面积550万平方公里,赤道穿过(纬度在8.5°N到20°S,经度为48°W到79°W,图1)[3],气候温暖湿润(平均气温20~30°C,最低19°C,最高35°C,年降水量2~4 m,局部1.5 m,有时6 m)。林冠*获得的光照非常重要,它有多种测量单位,最常用有光合有效辐射(photosynthetically active radiation,PAR)(考虑了光子的能量)或与其相关的光子通量密度[4]。由于植被覆盖情况不同,该通量变化很大。最多有1%入射光通量到达地面;在这一过程中,部分被捕获的光使得植被上层的附生植物*得以生长(图2)。

  对森林动态起作用的庞大水文系统为森林排水,反之亦然。据估计,亚马孙河河口处的年平均流量在200,000~250,000 m3/s;每年流入海洋的泥沙约有10亿吨,其流域面积为679万平方公里。相当大的区域不定期会被洪水淹没而暂时形成大片湿地(图3)。

图3. 左,孔泰河穿过圭亚那的森林;右,亚马孙森林的沼泽区(法属圭亚那考山)[来源:图片 © Alain Pavé]

  亚马孙流域降雨充沛,而且在一定程度上是自我维持的,这是蒸散*在紧挨着林冠上方形成的云所致。尽管雨来自东方,但该机制保证了距大西洋海岸2700千米的安第斯山麓也有充足的降水。云就在森林上方极低的高度形成。事实上,这些云的形成过程主要是由于树木释放的挥发性有机物(VOC)*发生光氧化使水分子聚集在亲水自由基上,而不是水蒸气在高空冷却而成。因此,水分是由森林自身维持的[5]

1.2. “纷繁的”生态系统

  查尔斯·达尔文(见焦点“达尔文”)在《物种起源》的最后一段中所用的“纷繁的”(entangled)一词,似乎很适合反映亚马孙生态系统的复杂性,就像本文最开始的照片中展示的那样。

  人们对全球林分特征的了解正在日益加深:16,000个高度混杂的树种(其中227种是优势种),共计3900亿[6][7]。相比之下,全球树木总数估计为30400亿棵(是此前估计的4002.5亿棵的近8倍),其中热带和亚热带森林为13900亿棵,北方针叶林为7400亿棵,温带森林为6100亿棵。每年有150亿棵树被砍伐,据估计,自人类文明伊始,已有46%的树木消失[8]。显然,不同时期的估算值之间的差异不容忽视,而绝大多数关于这一主题的讨论都没有考虑到这些不确定性。此外,植被覆盖高度依赖气候条件,会随时间的推移而变化,且在冰期覆盖最小。

  亚马孙生态系统包含陆地生物多样性的10%~13%,占地表生物多样性的5%[9]。目前没有对亚马孙物种数目的精确统计。对树的那项研究是个特例[10]。综合所有物种,我们可以文献中收集到的一些估计数据为基准:大约有200万物种,例如包括约4.5万种植物,约130万种动物,其中包括约100万种昆虫,约500种哺乳动物,1300种鸟和3000种淡水鱼。我们远没有鉴定出所有物种,甚至还没有对所有类群做出可靠估计[11]。如今,研究更多地聚焦于过程而非统计数量,且现在数量只是根据功能研究的需要进行估计。

1.3. 在全球环境中的作用

图4. 左,从太空拍摄的玛瑙斯(由四张陆地卫星图像合成)。右,在玛瑙斯下游,内格罗河(Rio Negro)的“黑水”与苏里摩希河(Rio Solimões)的“白水”交汇。亚马孙河在两河汇流处才得名。通常认为苏里摩希河发源于安第斯山脉的源头是亚马孙河的源头。[来源:图片 © Landsat(左)和Alain Pavé(右)]

  尽管数据波动很大,亚马孙森林生态系统是一个碳库碳汇。据估计,地上的碳储量为1000亿吨[12]。碳储量的年际波动取决于降雨量,在干旱年份,森林与大气的碳交换平衡可能是负值,即森林吸收的温室气体少于其排放的,但只要干旱年份出现的频率保持中等,这一平衡即可在几年内得以补偿。湿地与大气之间没有明显的碳交换,湿地与河流,尤其是亚马孙河的水量大幅波动相关(图4)。

  然而,太平洋的厄尔尼诺和拉尼娜事件正在迅速影响亚马孙,以至于在2010—2017年间的碳平衡为零,而根据此前的估计,这段时间的碳平衡变化极大[13]。在厄尔尼诺期间,南极绕极流的变化导致来自南极洲的干燥风增加。这些机制也许可以解释许多历史事件,如全新世的干旱期(见下文)。像这样的事件是间断出现的。

  一天之中,温室气体的交换也会有变化。植物在夜间呼吸释放CO2,而白天光合作用则吸收CO2而在季节水平上,雨季CO2的吸集比旱季更为高效

  尽管可以粗略估计出地上碳储量(见上文),但就土壤而言,由于亚马孙流域系统的规模、土壤多样性、植被覆盖、农业和其他利用,以及测量和利用结果的技术和方法等,人们面临种种困难。近年来,随着REDD(在发展中国家减少毁林和森林退化所致排放)的实施,人类进行了巨大努力,使农业生产和土地使用情况发生了很大变化。

  提出对亚马孙区域及其森林进行估计是很大胆的。我们可以引用Lucelma Aparecida Nascimento的工作[14]来简要说明结果的可变性,该工作估算森林土壤(位于马托格罗索州西北部)碳含量在0~8.89 kg/m2。这项工作包含了不同土壤和植被覆盖情况下的许多数据和分析结果。研究人员正在评估土地利用变化带来的影响,初步结果表明,草地土壤的有机碳储量高于森林的。另一方面,耕作土壤的有机碳储量则低于森林的[15]。需要指出的是,这类研究越来越使用整合分析[16]以辅助具体的实地测量工作。

  无论如何,亚马孙森林在主要的生物地球化学平衡中都发挥着重要作用。白天,像所有森林一样,它吸收二氧化碳并释放氧气(由于光合作用)。夜间,它通过呼吸作用“吸入”氧气并释放二氧化碳。它还不断释放其他气态化合物:NOx、挥发性有机物(VOCs),等等。它主要利用树木储碳,有助于在区域水平上维持湿润气候。然而,它绝不是“地球之肺”,也不是主要产氧者,其他森林和草原,特别是海洋,都对地球的氧气量有贡献。后文将提到,亚马孙森林生产了包括木材(一种长期的碳储存方式!)在内的可利用的可再生资源最先担心该产出的维持甚至发展的,是这片森林的居民。在讨论“全球作用”(见第3小节)前,我们应该先谈谈他们。

1.4. 历史

图5. 历史地标:亚马孙流域系统生物多样性变化及相关事件,包括地质事件。[来源:Alain Pavé & Gaëlle Fornet, 2010,见第3篇参考文献]
((1) 古新世-始新世极热事件(2) 早始新世气候适宜期 (3) 中始新世气候适宜期 (4) 中中新世气候适宜期)

  据估计,亚马孙森林的形成始于5500万年前,即在始新世中期(图5)。其生物多样性在该期末(距今约3700万年)达到顶峰[17]。那时,全球平均气温比现在高10~12℃[18],但气温高出的幅度各地分布并不均匀,尤其是在亚马孙区域,那里的气温比现在高大约5℃[19]。两极几乎没有或根本没有冰,山上几乎没有或根本没有冰川。300万年前巴拿马地峡关闭,使得大型捕食者从北向南迁徙,这解释了在更新世-上新世过渡期前后生物多样性的下降。

  在末次冰期,亚马孙森林似乎很好地抵御了干旱。过去一万年(全新世),气候和森林覆盖情况显著变化,这些变化出现于距今10,000-8,000年、距今6,000-4,000年和更近的距今1,500-1,100年和距今800-500年[20][21][22]

2. 亚马孙森林的结构和功能

  这片森林与法国的森林其他众所周知的森林不同

  自然更新VS人类主导的更新

  生物气候带热带VS温带);

  生物多样性高(1公顷圭亚那森林平均有200个乡土树种,超过整个法国本土的树种总和:在5,500万公顷上有137个树种);

  规模差异巨大(数十亿公顷VS最多数千公顷)等;

  下面介绍的内容提供了更多的信息,同时也知道主要的基本生态机制是存在的。

图6. 根据遥感数据编制的法属圭亚那的亚马孙森林地图。绿色阴影部分对应于不同的林分。图中特别标记了研究站和卡宴与库鲁实验室的位置(见参考文献27)。[来源:Alain Pavé & Gaëlle Fornet, 2010,见第3篇参考文献]
(极湿润与湿润雨林:绿色渐变区,热带稀树草原:橙色区,河流与湖泊:蓝色线条和区域)

  树木分布具有高度随机性异质性混杂性:相邻个体通常属于不同物种(每公顷有至少1个个体为代表的,多达200个物种)。显然,这样的结构有利于增强其恢复力生物多样性的维持[23]。这一点在森林样地,如法属圭亚那[24]的帕拉库[25]努里格森林生态系统定位研究站的研究中可以观察到。在更大尺度上,依照大陆腹地距海洋的远近,尤其是能反映森林类型的降雨,从航空和卫星传感影像中可以看到异质性(图6)[26][27]

  在这些总体框架下,生物间存在多种生态关系,例如,树木间的竞争(获取光照和水资源)、动物的捕食、树木与动物在传播种子过程中的合作或树木之间共享菌根*的合作。在亚马孙流域由动物为传播媒介的植物是优势类群,共享菌根合作中,挥发性有机物的释放可作为捕食者或害虫(食木或食叶动物)到来的信号[28]。这些都提示我们,森林不止是树的集合,更是由其他植物、动物和微生物共同组成的生态系统。多种多样的实体会相互作用。

  森林的自我更新为人熟知:树木破坏引起干扰后,喜阳树种*定居下来。随后,在其形成的遮盖下,一种相当喜雨的植被逐渐取代喜阳植物。这块森林重建后,虽与原来的森林不完全相同,但与相邻和破坏前林分的生物多样性接近[29]

  长期以来,亚马孙森林一直被认为是最初的*或原始的,即使不能忽略人类活动对森林结构和功能的影响,这些人类影响也是微不足道的。事实上,即使在考古文物缺失的情况下,许多观察结果还是引起了研究人员的注意,比如 “有用”物种在当地的增加或可持续的土壤转换。人类参与了这片森林的动态变化过程。根据这一观察结果,有必要重新审视原始森林或未开发森林这一概念。

3. 亚马孙流域:人类化的生态系统

图7. 美洲印第安人家庭和孩子,拍摄于巴西阿马帕州中心的阿拉米拉村。
[来源:图片 © Alain Pavé]

  到2015年,亚马孙流域的人口数量约为2200万(约4人/km2),主要集中在城市(约占70%),但也分散在河流沿岸和广阔的森林中。尽管法属圭亚那是移民区,那里的人口同样很少:不足30万居民(人口密度约3.6人/km2,与亚马孙其他地区相当)(图7)。

图8. 伐倒树木实行刀耕火种是当地毁林的传统方式(最多数公顷)。[来源:© CNRS]

  考古学研究表明,人类在全新世伊始到达亚马孙区域(根据安娜·罗斯福的研究,距今约12,000年[30]),那些被称为“美洲印第安人”的土著人来自末次冰期末(距今约15,000年,所谓的晚冰期)[31]西伯利亚-美洲大迁徙。亚马孙河流域的人类居住史阐明了南美定居模式:据说始于森林,随后继续迁徙到安第斯山脉和沿海地区。这些来自森林的人带来了“进步[32],并为亚马孙河流域的生物多样性动态做出贡献,他们还发展出了基于“刀耕火种”的乡村农业(图8)。

  事实上,要引发真正意义上的火灾,需要砍伐大片森林,然后让其干燥并燃烧。大多数情况下,火势在森林边缘停止蔓延,或由于湿度高而迅速停止蔓延。然而,人们担心大规模毁林会破坏森林自我维持的气候模式,引发森林干旱进而易发生火灾的连锁反应。

图9. 在法属圭亚那获得的激光雷达数据结果:左,努里格的一块样地上的树冠数字模型;右,数字地形模型展示了环绕一个美洲印第安人村庄(1/2公顷)的沟渠遗迹,该村庄在约1000年前被遗弃。[来源:左图© CNRS Guyane 2012/右图Couac programme, Sylvie Jérémie, INRAP, & Etienne Dambrine, INRA, 2010](Long:长度,Lat.:高度)

  新型探测技术(见焦点“法属圭亚那与生态学新技术”)如激光雷达(激光探测及测距系统)的使用,使人们可能发现更多考古文物,并支持人类已长期定居并穿越亚马孙森林的观点(图9)[33][34]

图10. 在圭亚那航天中心地面上发现的台田。小丘呈半球形,直径和高均约1m。[来源:© Stephen Rostain]

  其中惊人的发现之一是支撑美洲印第安人农业结构的自然生态机制——800年前在沿海稀树草原上建立的“台田(raised field)[35]。尽管处于降雨量极大的环境中,但这些结构在居民离开后依然存在(图10)。

  亚马孙森林中的人既有美洲印第安人,但也有“黑棕色”血统的人,即逃出大型种植园的奴隶。那些逃脱文化渗透的人保留了非洲的知识。内河航行和建造航行所需的大型独木舟就用到了这些知识。在主要河流沿岸,还有“卡布克罗人(caboclos)”混血人群,主要是葡萄牙人和美洲印第安人通婚的后代。在那里,有欧洲血统的居民大多集中在城市区域。总的来说,人群多样性极高。

  亚马孙的生物资源非常丰富。有些资源已被欧洲人利用,在亚马孙之外广受重视,比如可可、菠萝、木薯、多种豆类[36]、棕榈芯等。有许多质量很高但未充分开发的木材资源,可利用现代“可持续”提取技术对其进行干燥和加工。产乳胶的三叶胶得益于其在许多热带种植园的种植而大获成功。巴拉塔橡胶机械性能极佳,用于制造“顶级”高尔夫球。在药用方面,我们可以提到产自茜草科金鸡纳树的奎宁,该树原生于亚马孙的安第斯山脉的山坡上。然而,需要指出的是,来自森林的药用产品数目和传统医药知识有限,虽说约有1300种植物可作药用,但没有任何实质性开发。出于药理学目的的生物剽窃与其说是现实,更像是个传说。这可能并非“亚马孙的绿色黄金[37]

图11. 布朗热公司在法属圭亚那淘金,开采后正在试验恢复技术。该公司已经是法国国家科学研究中心(CNRS)汞污染研究的工业伙伴。[来源:图片 © Alain Pavé]

  生物多样性还包括令人恐惧的病原体,特别是微生物。例如,从非洲输入的黄热病已经蔓延,在整个亚马孙流域造成了大量感染。由于其疫苗100%有效,大规模感染已不复存在,但黄热病仍然是地方性的。疟疾也是输入的,在许多地区变为地方病。南美锥虫病(chagas disease)*源于南美洲,但并不特指来自亚马孙。尽管不能穷尽亚马孙的所有病原微生物,仍然有必要提及蝙蝠传播的地方性地索美定(desmodine)*狂犬病,而蝙蝠是多种病毒的真正宿主。

  环境状况改善亚马孙地区人口健康状况的一个重要考虑因素。除病原体及病媒生物,污染也会改变环境,如淘金过程中产生的汞污染[38]。但应该指出的是,物理化学污染可通过切断污染源而阻止。如果切断污染源后污染不会逐渐减少,最坏的情况是保持不变。但可以复制并扩散的病原体却并非如此。它们还会快速演化,对包括抗生素在内的控制措施表现出抗性。生物多样性本质上并不一定是什么好事,我们的研究远远不够:剧毒的植物、危险的动物等。

  包括黄金在内的矿产资源非常重要疯狂开采破坏了当地环境,然而,绝大多数淘金活动是暗中进行的,其造成的健康和社会后果是灾难性的。另一方面,有些公司试图尽量减小破坏,并在开采后采取修复,如图11所示。巴西的卡拉加斯(Carajas)矿山(产铁和锰)与阿马帕州的塞拉都纳维(Serra do Navio)矿山都做的很不错。值得庆幸的是,曾备受威胁的伦卡(Renca)(约4.1万平方公里,位于帕拉州和阿马帕州交界处)暂时得到了保护[39]

4. 生态学研究方法的发展

  对亚马孙森林研究已从探险模式转为生态学和人类学研究模式。探险和数据收集的第一阶段是殖民和新殖民主义背景下博物学家、地质学家、地理学家、人类学家和民族学家所做的工作[40]。随后,人们建立了野外台站。就法属圭亚那而言,从1980年代起,帕拉库努里格(见图7)及其他一些次要台站都得以建立。与此同时,技术革命逐渐将生态学从“刀绳生态学(opinel knife ecology,piece of string)”转变为“技术生态学(technology ecology)”[41](见焦点“法属圭亚那与生态学新技术”)。之后,科学研究的结果得以高效呈现。

  事关重大,森林的管理必须考虑各种目的,包括在保护居民利益的同时维持高水平的生物多样性。这种管理必须基于扎实的基础知识和多元的方法,而不仅是对单维的反映,比如严格的经济因素[42]。这样才可以为设计一个真正的生态系统工程构建完美的环境背景。

4.1. 处于非稳态中的亚马孙森林

图12. 天然森林生态系统示意图,树木以顶端不同的垂直线表示。不同个体之间可能相互作用。此外,它们还会与物理环境(大气圈、水圈和土壤)相互作用。这些个体和多种相互作用可能随时间而变化,且绝大多数是非线性的。[来源:Alain Pavé & Gaëlle Fornet, 2010,见第3篇参考文献]

  在森林具有明显同质性的情况下,即使从很远的地方也可以利用卫星传感器区分不同林分。亚马孙森林异质性极高,非常混杂;在小尺度上,邻近树木的种类与树龄不同,因而大小不同。还可以通过土壤*(排水或不排水的土壤)和如图7(原文有错,应为图6——校订者注)所示圭亚那的陆地距海洋的远近等生物气候条件区分生态群落。亚马孙森林的年龄历史表明其并非一成不变,而是持续变化,但以人类的时间尺度来看,这种变化非常缓慢。在这里,顶极*的概念如果没有被抛弃,那么也应该是相对的。极短时期内的观察会给人以一种平衡的错觉,从而导致自然固定不变的观念。人类活动和自然突发事件都可以暂时破坏这种状态。类似地,构成该生态系统的实体间的相互作用促进了其演化。

  树木间的相互作用,树木和动物、微生物等其他生物的相互作用,或树木和仅物理化学因子的相互作用,其本质是不同的(图12)。

  多样性、参与多样性的物种数目及它们的非线性相互作用使系统具有复杂性。系统中是否存在不能还原为统计平衡的“新兴”特性?这仍是个未解之谜。

4.2. 手中的机会

  无论面对任何情况,仍然可以认为,随机性*和“灵活多变的”相互作用网络提升了这些森林的恢复力*。应该优先研究产生变异性进而产生多样性的过程,不仅在生态学领域如此,而且在更为广泛的生命科学领域也应如此,从而整合对“秩序与混沌生态学(ecology of order and chaos)”的争论[43]。这是可以追溯到2500年前巴门尼德和赫拉克利特争论的现代形式[44]

  即使冒着广泛宣传可能导致概念本身被消弱的风险,我们也必须在理论上做出重大努力,以推动生物多样性等方面的发展。这是包括本文作者在内的多位作者所关心的问题[45]

  最后,生物学的大部分知识都是从有限种类生物模型的基础上获得的,这些生物模型涉及的物种包括著名的果蝇和大肠杆菌在内的共约50个。有些生态系统可以为生态学发挥这种模型作用,亚马孙森林的部分或全部,就可以作为其中之一。

5. 要记住的信息

图13. 亚马孙河岸上的小村庄(阿马帕州马卡帕上游)[来源:图片 © Alain Pavé]

  让我们回到最初在引言中提出的问题:

  • 关于这片森林,我们对它了解多少?尽管人类付出了长期巨大的努力,但有关亚马孙的数据仍是零碎的、不准确的。森林并非只是树木的集合,而是树与其他动植物和微生物共同组成的生态系统,由庞大的水文系统浇灌,存在多种相互作用的。要当心过于简单化的信息和想象大于科学的描述。
  • 我们需要获得哪些知识?如何获得这些知识?除实际数据外,还要对该区域进行综合、系统的描述,以指导获取环境数据,这也需要继续进行技术努力。要时刻对理论进行反思。
  • 如何将这些知识在这种环境下以最佳方式用于决策和行动?建立模型以检验关于演化的设想,推广适应力强的森林物种,改进森林管理策略,建立真正的生态系统工程。
  • 这样做有什么好处?这些措施首先是有利于该区居民,也有利于保护这一地区的国家,也不要忘记亚马孙生态系统,尤其是森林的全球作用(气候和生物多样性),它与全人类息息相关。
  • 生活在这里的人们未来如何?(图13)这一未来必须是“合理的、精心选择的、共享的”,并通过动态管理辅以建模和仿真[46]不断重新评估和调整。

 


参考资料和说明

封面图片. [来源:法国国家科学研究中心,Pavé A. & Fornet G. 参考文献3]

[1] 法国的贡献主要是在法属圭亚那与其他国家(特别是巴西)的团队合作完成的。

[2] 随时间推移,人们鉴别并纠正了错误的来源。这个原因解释了估计数据的变化,550万平方公里是最小估计值。常识参考:地球表面积=5.1亿平方公里(510,067,420 km2),海洋面积=3.62亿平方公里(3.618 亿平方公里),陆地面积= 1.48亿平方公里(1.482亿平方公里),森林面积(2010)=40.33亿公顷或4003.3万平方公里(陆地面积的约27%)。

[3] Pavé A. & Fornet G., Amazonie, une aventure scientifique et humaine du CNRS, Ed. Galaade, Paris. 2010.

[4] 植物光合作用的有效辐射波长范围主要为400-700nm,被照射表面接收到的光能单位表示为µmol·m-2·s-1

[5] U. Pöschl et al, Rainforest Aerosols as Biogenic Nuclei of Clouds and Precipitation in the Amazon. Science, 329, 2010.

[6] Stephen P. Hubbell et al. How many tree species are there in the Amazon and how many of them will go extinct? Proc. Nat. Acad. Sci. USA, 105, supp. 1, 2008.

[7] ter Steege H. et al. Hyperdominance in the Amazonia Tree Flora. Science 342, 2013.

[8] Crowther T. W. et al. Mapping tree density at a global scale, Nature 525, 2015, 201-205.

[9] Lewinsohn T.M., Prado P.I. How many species are there in Brazil? Conserv. Biology, 19, 2005, 619-624.

[10] 事实上,这些树木仍在原地。树木很大,寿命很长。观察它们比观察更小的、会动的有机体,如动物要更容易。不过,树木也会移动,但这种移动发生在代际之间:种子扩散,然后根据当地的生物生态条件,发芽和生长可能成功或失败。这就是树木种群在生物气候变化期间迁移的方式。

[11] 事实上,在亚马孙地区经常能发现新物种。在2017年8月30日世界自然基金会(WWF)发布的报告中,鉴定出了381个新种(不包括昆虫)。

[12] Fernando D.B. Espírito-Santo et al. Size and frequency of natural forest disturbances and the Amazon forest carbon balance. Nature Communications volume 5, Article number: 3434, 2014

[13] Lie Fan et al. Satellite-observed pantropical carbon dynamics. Nature Plants, 07/29/2019. And “La biomasse aérienne de la végétation de la zone tropicale n’a plus d’impact positif sur le stockage du carbone”

[14] Nascimento L.A. Stockage du carbone dans les sols et dynamique des paysages en Amazonie : l’exemple du Nord-Ouest de l’État de Mato Grosso – Brésil dans le cadre du REDD (Réduction des Émissions par Déforestation et Dégradation).Geography. University Rennes 2, 2015. French. https://www.theses.fr/2015REN20028

[15] Fujisaki K., Perrin A. S., Desjardins T., Bernoux M., Balbino L. C. & Brossard M. (2015). From forest to cropland and pasture systems: a critical review of soil organic carbon stocks changes in Amazonia. Global Change Biology, 21 (7), 2773-2786. ISSN 1354-1013

[16] 对荟萃分析更准确的描述可以查阅:Makowski D., Synthétiser les connaissances en agronomie。Notes from the Académie d’agriculture de France, 2017. https://www.academie-agriculture.fr/publications/notes-academiques/n3af-2017-3-note-de-synthese-synthetiser-les-connaissances-en

[17] BP(距今),BC(公元前),AC(公元后)。

[18] Hoorn C. & Wesselingh F (Eds). Amazonia Lanscape and Evolution. A look into the past. Whiley-Blackwell, Oxford, UK, 2010.

[19] Randford T., Could humans cause another Paleocene-Eocene Thermal Maximum? Climate Homenews, 2013.

[20] Schwarz D. Expansions et recul des forêts équatoriales. Pour la Science, 271, 2000. 在这篇法语文章中,我们可以找到以下两篇参考文献中介绍的大部分结果。这些结果主要来自由联合国教科文组织(UNESCO)资助、IRD/CNRS(环境项目)发起的ECOFIT“热带森林生态系统”项目

[21] Poncy O., Sabatier D., Prévost M.F. & Hardy I. The lowland high rainforest structure and tree species diversity, in Bongers F., Charles-Dominique P., Forget P.M. & Théry M. (Eds) ” Nouragues. Dynamics and Plant-Animal Interactions in a Neotropical Rainforest”, Kluwer Acad. 2001, 32-46.

[22] Servant M & Servant-Vildary S. (Eds, 2000). Dynamiques à long terme des écosystèmes forestiers intertropicaux CNRS, UNESCO, MAE, IRD, Paris, 427p.

[23] Pavé A. Necessity of chance: biological roulettes and biodiversity, C.R. Biologies, 330, 2007, pp. 189-198

[24] 法属圭亚那面积约为84,000平方公里(接近葡萄牙的面积),其中75,000平方公里是森林(约为(法国)本土森林面积的50%)。

[25] Gourlé-Fleury S., Guehl J.M. & Laroussinie O. Ecology and Management of a Neotropical Forest. Lessons drawn from Paracou, a long-term experimental research site in French Guiana. Elsevier, 311p, 2004.

[26] Saint-Jean D. & Pellet E. Explorateurs d’Amazonie. Aventuriers de la Science en Guyane. Ibis Rouge Éditions, 2008 (Preface Alain Pavé).

[27] http://www.guyane.cnrs.fr/

[28] 人们必须谨慎使用这些最初是与人类目的有关的词语:生态系统中的竞争和合作背后并无任何目的。这些机制是自发形成的。

[29] Norten N., Angarita H. A., Bongers F., Martinez-Ramos M., Granzow-de la Cerda I., van Breugel M., Lebrija-Tejos E., Meave J.A., Vandermeer J., Bruce Williamson G., Finegan B., Mesquita R. & Chazdon R.L. Successional dynamics in neotropical forests are as uncertain as they are predictable. Proc. Nat. Acad. Sci. USA, 112, 8013-8018, 2015.

[30] 安娜·罗斯福(Anna Roosevelt)是研究亚马孙的最著名的考古学家和生态学家之一。从她的曾祖父西奥多·罗斯福(Theodore Roosevelt),这个家族就对这个地区感兴趣。西奥多曾任美国总统(1901—1909),并在两届任期后多次在亚马孙逗留。安娜有许多作品,如:Roosevelt A. Twelve Thousand Years of Human-Environment Interaction in the Amazon Floodplain. Advances in Economic Botany, Vol. 13, New York Botanical Garden. pp. 371-392, 1999. 她是法国国家科学研究中心亚马孙项目科学委员会成员。

[31] Reich D. et al. Reconstructing Native American population history. Nature, 488, 370-375, 2012. 该工作由法国国家科学研究中心亚马孙项目资助。

[32] Rostain S., Amazonie : les 12 travaux des civilisations précolombiennes. Belin, Paris, 2017; & Rostain S., Amazonie un jardin sauvage ou une force domestiquée. Essai d’écologie historique.. Actes Sud, wandering, 2011.

[33] Molino J.F., Mestre M. & Odonne G. La biodiversité de l’Amazonie, un héritage des Précolombiens ? Research, 527, 67-71, 2017.

[34] Jérémie S., Dambrine E.. Impact des occupations amérindiennes anciennes sur les propriétés des sols et la diversité des forêts guyanaises. In, Alain Pavé and Gaëlle Fornet, Op. Cit.

[35] McKey D., Rostain S., Iriarte J., Glaser B., Birk J.J., Holst I. &Renard D., “Pre-Columbian Agricultural Landscapes, Ecosystem Engineers, and Self-organized Patchiness in Amazonia”, Proc. Nat. Acad. Sci. USA, 107, 2010, p. 7823-7828. CNRS press release, March 13, 2010.

[36] 位于哥伦比亚卡利的国际热带农业研究中心保存了约5,000个品种的活体标本。这些收藏是保持生物多样性的方式之一。

[37] 在1997年的一档电视节目中,我的态度比现要在乐观得多。在增加了20年的亚马孙经历后,我变得保守得多……获取摘录,可以点击网页:http: //www.cnrs.fr/cw/dossiers/dosbiodiv/index.php?pid=decouv_chapC_p3

[38] http://www.epoc.u-bordeaux.fr/index.php?lang=frage=eq_ea_flash01 and the summary document: https://hist-geographie.dis.ac-guyane.fr/…/2d1_les_defis_de_la_sante_en_guyane.doc

[39] 伦卡(Reserva Nacional do Cobre e Associados)于1980年代早期出于未来采矿的目的成立。在未进行开发的情况下,它实际上成了自然保护区。2017年,时任巴西总统米歇尔·特梅尔(Michel Temer)对这一状态构成威胁。面对国内外抗议,其自然保护区的状态得以保持。

[40] Raby M. The Colonial Origin of Tropical Field Station. Am. Scientist, 105, 216-223, 2017.

[41] Legay J.M. & Barbault R. (Dir.). La révolution technologique en écologie. Masson, 1995.

[42] Pavé A., Comprendre la biodiversité, vrais problèmes et idées fausses. Threshold Edition, 2019.

[43] Worster D. The Wealth of Nature, Environmental History and the Ecological Imagination. Oxford University Press, 1993.

[44] 这两位苏格拉底之前的哲学家恰巧生活在同一时期,但彼此相距甚远。巴门尼德生活在今意大利南部的埃雷,赫拉克利特生活在今土耳其西海岸的以弗所。这场辩论无疑是虚构的,是根据两位哲学家的作品及受其引导的人们的作品重新构建的。从广义上讲,用现在的话说,巴门尼德捍卫的是世界静止的观点,而观察到的运动和变化是对持续作用力的响应。赫拉克利特认为世界在不断演变(“你永远不会在同一条河中洗两次澡”),而常常是混沌动力学。这一争论无疑在思想史上留下了深刻的烙印,甚至至今仍然存在,特别是在生态学中(见上一条参考文献)。

[45] Casseta E & Delors J (Eds). La biodiversité en question. Enjeux philosophiques, éthiques et scientifiques. Editions Matériologiques, 2014, Paris.

[46] 多因子技术已证实了其有效性,尤其是在社会生态系统建模方面。伴随建模的概念似乎很适于这种情况。参见:Collectif Comod, La modélisation comme outil d’accompagnement, Natures Sciences Sociétés, 13, 165-168, 2005。从自动化工程师的工作中汲取灵感也不无道理,但令人奇怪的是,他们的工作在工业工程领域之外鲜为人知。1980年代,在罗讷-阿尔卑斯地区,里昂的生物统计学家和格勒诺布尔的自动控制专家开始合作,后合作扩展到法国国家信息与自动化研究所的爱朵拉俱乐部,合作非常有效,尤其是在建立这种合作方面非常有效。


环境百科全书由环境和能源百科全书协会出版 (www.a3e.fr),该协会与格勒诺布尔阿尔卑斯大学和格勒诺布尔INP有合同关系,并由法国科学院赞助。

引用这篇文章: PAVE Alain (2024年3月14日), 亚马孙:持续进化的巨型生态系统, 环境百科全书,咨询于 2024年7月27日 [在线ISSN 2555-0950]网址: https://www.encyclopedie-environnement.org/zh/vivant-zh/amazonia-ecosystem-constant-evolution/.

环境百科全书中的文章是根据知识共享BY-NC-SA许可条款提供的,该许可授权复制的条件是:引用来源,不作商业使用,共享相同的初始条件,并且在每次重复使用或分发时复制知识共享BY-NC-SA许可声明。

Amazonia: a huge ecosystem in constant evolution

The Amazon region is home to the second largest forest on the planet after the Siberian forest, but the first in terms of biodiversity. The equator crosses it; the regional climate is described as “warm and humid”. It is subject to a seasonal rhythm (dry season, wet season), such that it always remains green (evergreen). A broad hydrographic network irrigates it, including the Amazon, the largest river in the world. This unique and complex object is at the heart of many environmental, economic and social issues, from local to global, so much that scientific research devotes significant efforts to it.[1] Nevertheless, our ignorance about it is still great. This forest is also the subject of more or less fantasized stories: Eldorado, Green Hell, emerald forest, lung of the planet; it would have sheltered isolated peoples, fearsome Amerindians, sometimes cannibals, in fact often victims and nowadays perceived as peaceful and ecologists… Not everything is wrong, but to be put into perspective: what do we know about it? What knowledge should be acquired and how to do it? How can they be used and complemented to decide and act in the best way on this environment? To what benefit? What future for the people who live there?

The Amazonian forest ecosystem is attributed a global role in regulating greenhouse gases (GHGs) and as a reservoir of biological diversity. This ecosystem is also an economic, human and social object through the resources it contains, the populations that inhabit it and the attention it arouses. Spread over nine countries, its future depends on various policies, including those of non-Amazonian institutions. Bioclimatic changes are likely to change its functioning. Human actions can alter its structure: from the simple cutting of plots to the deforestation of entire regions, or, more subtly, local changes such as the enrichment of “useful” species. The representations we make of them, the ideas that emerge from them, sometimes far from the realities on the ground, play a decisive role, particularly in political and technical decisions. Finally, spontaneous biophysical and ecological processes give it a highly random structure. This is the case, for example, of the spread of plant seeds, especially those of trees, by fluids, air and water, whose flows are often turbulent, or by animals (birds, mammals) whose movements are mostly erratic.

1. Amazonian forest: what are we talking about?

amazonia map
Figure 1. Some geographical and bioclimatic landmarks of the Amazon. The forest area is in dark green. Map based on the Encyclopædia Universalis atlas. [Source: Alain Pavé & Gaëlle Fornet, 2010, see ref. 3]
The word “forest” refers to an ecosystem, densely populated with trees and occupying a defined terrestrial space. There are different types depending on the bioclimatic conditions in which the forests are located. Thus, we can distinguish boreal forests, temperate forests, mediterranean forests, intertropical forests. Subcategories have also been defined, such as temperate or intertropical dry and humid forests. The Amazonian forest is therefore of the “intertropical humid” type.

Beyond these generalities, the data acquired on this ecosystem show significant variations in space and time. These variations are often due to the techniques and methods used by researchers. To these metrological variations, it is necessary to add the variability generated by bioclimatic and ecological processes influencing ecosystem dynamics. Human actions also matter a lot, quite soft and subtle in the past they can be brutal: massive destruction of trees followed by arsons.

1.1. A vast equatorial space

arbre foret amazonie - foret amazonie - amazonie
Figure 2. Typical aspect of a tree in the Amazonian forest showing the density of the population of the upper stratum (crown): epiphytes, bird nests (in this case cassia, Casicus cela) in the shape of a bag. [Source: Photo © Alain Pavé]
The Amazonian forest [2] covers an area of about 5.5 million km2. It is crossed by the equator (latitude between 8.5° N and 20° S, longitude between 48° and 79° West, Figure 1) [3], the climate is described as warm and humid (on average: 20 to 30°C – min. 19°C, max. 35°C-, annual precipitation from 2 m to 4 m, locally 1.5 m sometimes 6 m). The illumination of the canopy* is important and is measured with various units, in particular the density of photon fluxes related to photosynthetically active radiations (taking into account the energy of these photons) or PAR [4]. This flow is very variable depending on the cover. At best 1% of the incident light flux reaches the ground; in the process, part of the light captured allows the growth of epiphytes* in the upper layers of vegetation (Figure 2).

The forest is drained by a vast hydrological system acting on forest dynamics and vice versa. The Amazon flow at the estuary is estimated at between 200,000 and 250,000 m3/s, on average over the year; the amount of sediment arriving in the ocean is about one billion tonnes per year, its basin covers an area of 6,790,000 km2. Significant areas are occasionally flooded and transiently constitute large wetlands (Figure 3).

riviere comte guyane - foret guyane - amazonie - foret amazonie
Figure 3. On the left, Comté River crossing the Guyanese forest, and on the right, swampy area in the Amazonian forest (Kaw Mountain, French Guiana). [Source: Photos © Alain Pavé]
Rainfall is are abundant and, in part, self-sustaining thanks to the clouds, resulting from evapotranspiration*, which form immediately above the canopy. Although the rains come from the East, this mechanism ensures a significant watering up to the Andean foothills, 2700 km from the Atlantic coast. Clouds form at very low altitudes, just above the forest. In fact, the formation process of these clouds is mainly due to the aggregation of water molecules on hydrophilic radicals from the photonic oxidation of volatile organic compounds (VOC)* emitted by trees and not to the cooling of steam in altitude. Thus moisture is self-maintaining by the forest itself [5].

1.2. An “entangled” ecosystem

The word “entangled“, used by Charles Darwin (read Focus Darwin) in the last paragraph of “The Origin of Species“, seems appropriate to reflect the complexity of an Amazonian ecosystem, as suggested by the photography at the top of this article.

The global characteristics of forest stands are increasingly well known: 16,000 highly mixed tree species, of which 227 are dominant, a total of 390 billion trees [6],[7]. By way of comparison, the number of trees worldwide is estimated at 3,040 billion (nearly 8 times higher than a previous estimate of 400.25 billion), including 1,390 billion in tropical and subtropical forests, 740 billion in boreal forests and 610 billion in temperate forests. 15 billion would be cut each year and it is estimated that 46% have disappeared since the beginning of human civilizations [8]. It is clear that the differences between estimates over time are not negligible, most talks on this subject do not take these uncertainties into account. In addition, tree cover is highly dependent on climatic conditions, changes over time and is minimal during ice ages.

The Amazonian ecosystem contains 10 to 13% of the continental biodiversity, for 5% of the land surface [9]. There is no precise census of the species present in the Amazon. The one concerning trees is particular [10]. All categories combined, we can take as benchmarks some estimates collected in the literature: of the order of 2 million living species, including, for example, ~45,000 plant species, ~1.3 million animal species, including ~1 million insects, of the order of 500 for mammals, 1,300 for birds and 3000 for fishes in rivers. We are extremely far from having identified everything and even simply having reliable estimates for all groups [11]. Today, research focuses more on the study of processes than on censuses and, nowadays, the latter are only done according to the needs of functional studies.

1.3. A global environmental role

manaus - amazonie
Figure 4. On the left, Manaus seen from space (composite image from four Landsat photos). On the right, a mixture of the “black waters” of Rio Negro and the “white waters” of Rio Solimões downstream of Manaus. The Amazon only takes its name at the confluence. The Andean springs of the Solimões are considered as those of the Amazon. [Source: Photo © Landsat (left) and Alain Pavé (right)]
Although the data are highly fluctuating, this forest ecosystem is a carbon stock and sink. The above-ground stock is estimated at 100 GT of carbon [12]. Interannual fluctuations depend on rainfall, in dry years the balance of exchanges with the atmosphere can be negative, it absorbs less GHGs than it emits, but this balance is compensated over several years as long as the frequency of dry years remains modest. Wetlands associated with large river fluctuations, particularly in the Amazon (Figure 4), have no significant carbon exchange with the atmosphere.

Nevertheless, the El Niño and La Niña events in the Pacific are having a rapid impact in the Amazon, to the point that over the period 2010-2017 the balance is zero and for what has been assessed in the past, very variable [13]. During El Niño, changes in the Antarctic circumpolar current lead to an increase in dry winds from Antarctica. These mechanisms have made it possible to explain past events, for example, the dry periods of the Holocene (see below). Such sequences are episodic.

On a daytime scale, GHG exchanges vary, the nocturnal respiration of plants releases CO2, but diurnal photosynthesis absorbs it. At the seasonal level, CO2 sequestration is more efficient in the rainy season than in the dry season.

While the carbon stock above ground can be roughly estimated (see above), as far as soils are concerned, difficulties are encountered due to the size of the Amazonian system, soil diversity, vegetation cover, agricultural and other uses, as well as technical and methodological aspects of measuring and exploiting results. A major effort has been made in recent years with the implementation of REDD (Reducing Emissions from Deforestation and Forest Degradation in Developing Countries), resulting in changes in agricultural operations and land use more generally.

It would be bold to propose estimates for the Amazon and its forest. To give an idea of the variability of the results, we can quote the work of Lucelma Aparecida Nascimento [14], which gives estimates ranging from 0 kg/m2 to 8.89 kg/m2 of carbon for forest soils (northwest of Mato Grosso). This work contains many data and analytical results for various soils and vegetation covers. The effects of land-use change are being assessed, and initial results show that pasture soils have a higher organic carbon stock than forests. On the other hand, the opposite is true for cultivated soils [15]. It should be noted that this type of study increasingly uses meta-analysis [16] to complement specific field work.

In any case, the Amazonian forest plays an important role in the major biogeochemical balances. During the day, like all forests, it absorbs carbon dioxide and releases oxygen (owing to photosynthesis). At night, it “breathes” using oxygen and releases CO2 through respiration. It constantly emits other gaseous compounds: NOx, VOCs, etc. It stores carbon mainly in its trees and contributes to maintaining a humid climate at the regional level. However, it is by no means the “lung of the planet” nor the main producer of oxygen, other forests and grasslands contribute to it and especially the oceans. As we will see later, it produces usable renewable resources including wood (a long-term means of carbon storage!). The first to be concerned with the maintenance, or even development, of this production are the inhabitants of this forest, who should be discussed first, before discussing the “global role” (see section 3).

1.4. History

landmarks amazonia
Figure 5. Historical landmarks: variations in biodiversity of the Amazonian system and correlative events, including geological events. [Source: Alain Pavé & Gaëlle Fornet, 2010, see ref. 3]
The beginning of the sttlement of this forest is estimated at 55 million years, i.e. in the middle of the Eocene (Figure 5). Its biodiversity was at its highest at the end of this period (around 37 million years BP) [17]. The average temperature on the globe was then 10 to 12°C higher than that of our time [18], but unevenly distributed across the globe and particularly in the Amazon where it was about 5°C higher [19]. The poles had little or no ice, the mountains few or no glaciers. The closure of the Isthmus of Panama 3 million years ago, which allowed the migration of large predators from north to south, explains the decline in diversity in the vicinity of the Pleistocene-Pliocene transition.

During the last glaciation, the Amazonian forest seems to have resisted drought well. Over the past 10,000 years (Holocene), there have been significant variations in climate and forest cover, ranging from 10,000 to 8,000 BP, 6,000 to 4,000 BP and more recently between 1,500 and 1,100 BP and 800 to 500 BP [20],[21],[22].

2. Structure and functioning of the Amazonian forest

This forest is different from other already well-known cases, such as those of French forests:

  • Natural regeneration versus regeneration mainly carried out by humans;
  • Bioclimatic zone (inter-tropical versus temperate);
  • High biodiversity (one hectare of Guyanese forest contains as many indigenous tree species, on average 200, as in the entire metropolitan territory: 137 for 55 million hectares);
  • Very different scales (billions versus, at most, thousands of hectares), etc.

What is presented below provides more information while knowing that the major fundamental ecological mechanisms are present.

map amazonia forest
Figure 6. This map of the Amazonian forest of French Guiana was compiled from remote sensing data. The shades of green correspond to different forest stands. The location of research stations is specified as well as the location of laboratories in Cayenne and Kourou (see ref. [27]). [Source: Alain Pavé & Gaëlle Fornet, 2010, see ref. 3]
The distribution of trees is highly random, heterogeneous and mixed: neighbouring individuals are generally of different species (up to 200 species per hectare are represented by at least one individual). It is easy to show that such a structure promotes its resilience and the maintenance of biodiversity [23]. This is observed in the forest plots studied, for example in the forest land stations in French Guiana [24]: Paracou [25] and Nouragues. On a larger scale, heterogeneity is visible from aerial and satellite sensor images, in accordance with an ocean gradient in the continental interior, particularly rainfall, which is reflected in forest types (Figure 6) [26],[27].

Below these broad outlines, there are multiple ecological relationships between living beings, for example: competition between trees (access to light and water resources), predation by animals, cooperation between trees and animals for the dissemination of seeds, a process known as zoochore dominant in the Amazon, or between trees such as the sharing of mycorrhizae*, VOC emissions can signal the arrival of predators or pests (xylophages or tree leaf eaters) [28]. All this reminds us that the forest is not just a collection of trees, but an ecosystem populated by other plants, animals and micro-organisms. These various entities interact.

Spontaneous regeneration is quite well known: after a disturbance corresponding to the destruction of trees, trees of heliophilic species* settle. Then, under the cover thus formed, a rather ombrophilic vegetation gradually replaces the heliophiles. The piece of forest is reconstituted, not identically, but with biodiversity close to that of the neighbouring and previous stand [29].

The Amazonian forest has long been considered primary* or pristine, where humans would have played a negligible, if not non-existent, role in its structure and functioning. In fact, many observations have attracted the attention of researchers, even in the absence of archaeological artifacts, such as local enrichment with “useful” species or sustainable soil transformations. Humans have participated in the dynamics of this forest. It is necessary to revisit the very notions of primary or virgin forests following this observation.

3. Amazonia: an anthropized ecosystem

Figure 7. Amerindian family and children (Wyãpi), Aramira village (Amapá), in the centre of Amapá state in Brazil. [Source: Photo © Alain Pavé]
By 2015, the human population in the Amazon number around 22 million inhabitants (~4 inhabitants/km2), mainly grouped in cities (approx. 70%), but also scattered along the rivers and in the vast forest. In French Guiana, although an immigration territory, the population is also small: just under 300,000 inhabitants (density of about 3.6 inhabitants/km2, equivalent to the rest of the Amazon) (Figure 7).

Brulis on felled trees - amazonian forest
Figure 8. Slash-and-burn farming on felled trees, traditional method of local deforestation (at most a few hectares). [Source: © CNRS]
Archaeological studies show that humans arrived at the beginning of the Holocene (around 12,000 years BP, according to Anna Roosevelt [30]) and that those called “Amerindians” came from the great Siberian-American migration at the end of the last ice age (around 15,000 years BP, the so-called late glacial period) [31]. The age of the human population of the Amazon has clarified the pattern of colonization in South America: it is said to have begun with the forest, then continued with migration to the Andes and the coast. These forest peoples have carried out “developments [32], and have contributed to the dynamics of Amazonian biodiversity, they have also developed a village agriculture based on “Slash-and-burn farming” (Figure 8).

In fact, to start real fires, large areas must be deforested, then allowed to dry and burn. Most often, the fire stops at the edge of the forest, otherwise the progression stops quickly as the humidity is high. However, there is concern that in the event of massive deforestation, the self-sustaining climate regime will stop and cause a chain reaction of drying out and thus fire sensitivity.

Figure 9. Results obtained from Lidar data in French Guiana: on the left, a digital model of the canopy of a plot of land in Les Nouragues, on the right, a digital terrain model showing the remains of ditches that surrounded an Amerindian village (1/2 ha) abandoned about 1000 years ago [Source: left, © CNRS Guyane 2012 / Right, Couac programme, Sylvie Jérémie, INRAP, & Etienne Dambrine, INRA, 2010].
The use of new exploration technologies (see Focus French Guiana and new technologies for ecology), such as Lidar (light detection and ranging), has made it possible to find many archaeological artifacts and to reinforce the idea of an Amazonian forest inhabited and traversed by humans for a long time (Figure 9). [33],[34].

Figure 10. Raised fields found on the ground of the Guiana Space Center. The small hillocks are hemispherical in shape, about one meter in diameter and in height. [Source: Photo © Stephen Rostain].
Among the spectacular results are the spontaneous ecological mechanisms for maintaining structures from Amerindian agriculture set up 800 years ago in the coastal savannahs: the “raised fields[35]. These structures persisted after the departure of the inhabitants despite the drastic rainfall conditions (Figure 10).

The peoples of the forest are Amerindians, but also of “black-brown” origin, i.e. slaves who have escaped from the large plantations. Those who escaped acculturation have retained African knowledge. This is the case for inland navigation and the construction of large canoes necessary for this navigation. Along the major rivers, there are also mixed populations of “caboclos“, mainly from Portuguese and Amerindian marriages. On their side, the majority of inhabitants of European origin are concentrated in urban areas. In total, a human population of great diversity.

The Amazonian living resources are numerous. Some have been appropriated by Europeans and widely valued elsewhere, for example, cocoa, pineapple, cassava, many varieties of beans [36], palm heart, etc. There are many high quality, under-exploited wood resources that could be exploited using modern “sustainable” extraction techniques for drying and machining. Hevea, a latex producer, has been very successful thanks to plantations in many intertropical regions. Balata rubber has remarkable mechanical properties and is used in the manufacture of “top-of-the-range” golf balls. Among the medicines, we can mention quinine, from the quinquinas of the rubiaceae family, found on the Amazonian slope of the Andes. However, we note the limited number of pharmaceutical products from the forest and traditional knowledge for which there are about 1,300 plants for medicinal use but which have not given rise to any real development. Biopiracy for pharmacological purposes is more a myth than a reality. It is probably not the “green gold of the Amazon[37].

orpaillage guyane
Figure 11. Gold panning in French Guiana by a company (Boulanger Mine), testing restoration techniques after exploitation. This company has been the CNRS’ industrial partner in studies on mercury pollution [Source: Photo © Alain Pavé]
Biodiversity is also that of pathogens, particularly microorganisms, which are fearsome. For example, yellow fever, imported from Africa, has spread. It has claimed many victims throughout the Amazon; this is no longer the case because the vaccine is 100% effective, but it remains endemic. Malaria has also been imported, it has become endemic in many regions. Chagas disease* is of South American origin, but not specifically from the Amazon. Although not exhaustive, it is still necessary to mention the endemic desmodine* rabies transmitted by bats, which are true reservoirs of viruses.

The state of the environment is an important factor to consider in improving the health of Amazonian populations, in addition to pathogens and their vectors, pollution can alter it, such as mercury pollution from gold panning [38]. It should be noted, however, that physico-chemical pollution can be stopped by cutting off the source. It remains at the worst constant, if not gradually decreases. This is not the case for pathogens that reproduce and spread. They also evolve rapidly and can become resistant to control measures, including antibiotics. Biodiversity is not good in essence and we are far from having gone around: plants are frighteningly toxic, animals are dangerous, etc.

Mineral resources, including gold, are important. Their wild exploitation disrupts the local environment, yet most of the gold panning is clandestine, and the health and social consequences are disastrous. On the other hand, some companies try to minimize damage and carry out restoration after exploitation, as shown in Figure 11. In Brazil, the case of the Carajas mines (iron and manganese) is spectacular, as well as the Serra do Navio mine in Amapá. Fortunately, Renca (about 41,000 km2 on the borders of the Para and Amapa states), once threatened, remains protected for the time being [39].

4. Evolving the ecological approach

The study of the Amazonian forest has shifted from an exploratory mode to an ecological and anthropological one. The first phase of exploration and data collection was the work of naturalists, geologists, geographers, anthropologists and ethnologists in a colonial and neo-colonial context [40]. Then field stations were set up; for French Guiana, from the 1980s onwards, these were Paracou and Nouragues (see Figure 7) and others of lesser importance. At the same time, a technological revolution has gradually transformed  ecology from “opinel knife ecology, piece of string” to “technological ecology” [41] (see Focus French Guiana and new technologies for ecology). Scientific research can then be expressed effectively.

The stakes are very high, we must manage these forests with various objectives, including maintaining a high level of biodiversity while preserving the interests of the inhabitants. This stewardship must be based on solid basic knowledge and a multivariate approach and not on a one-dimensional projection, for example, on that of the strict economic factor [42]. An ideal context for the design of a true ecological systems engineering.

4.1. An Amazonian forest in an unstable state

schema natural forest ecosystem
Figure 12. Schematic diagram of a natural forest ecosystem, the trees are represented by vertical lines ending in a different top. These various individuals may interact with each other. In addition, they interact with the physical environment: atmosphere, hydrosphere and soil. These individuals and the various interactions can change over time. They are most often non-linear. [Source: Alain Pavé & Gaëlle Fornet, 2010, see ref. 3]
Below an apparent homogeneity of the forest, different stands can be distinguished, even from a distance, with sensors on board satellites. Moreover, this forest is very heterogeneous and mixed; on a small scale, the neighbouring trees are of different species and ages and therefore of different sizes. Ecological communities are also distinguished by edaphic* (drained or undrained soils) and bioclimatic conditions, such as, for example, the ocean-continental gradient in Guyana, visible in Figure 7. The age of the Amazonian forest and its history show that it has not always been the same, it varies permanently, but slowly on a human time scale. Here, the concept of climax* is to be relativized if not abandoned. Punctual observation gives the illusion of balance, which can lead to a fixistic conception of nature. Human action can disrupt this condition as well as natural accidents intermittently. Similarly, interactions between the entities that make up this ecosystem contribute to its evolution.

These interactions are of different natures, between trees themselves or involving other living beings, such as animals or micro-organisms, or simply physical or chemical factors (Figure 12).

The diversity, the number of objects involved and the non-linearity of their interactions lead to the qualification of such a system as complex. Are there “emerging” properties that cannot be reduced to statistical balances? The question is open.

4.2. Chance at the handles

In any case, it can still be argued that stochasticity* and “flexible and changing” interaction networks promote the resilience* of these forests. The study of processes generating variability and therefore diversity should become a priority, not only in ecology, but more generally in life sciences, thus integrating the debate on the “ecology of order and chaos[43], itself a modern form of the controversy between Parmenides and Heraclitus dating back… 2500 years [44].

A major theoretical effort must be made to move forward, for example on biodiversity, at the risk that the much-publicized erosion may be primarily that of the concept itself. This is the concern of several authors [45], including the one in this article.

Finally, biology has acquired most of its knowledge on a limited number of biological models, roughly organisms of about fifty species including the famous drosophila and Escherichia coli. Some ecosystems could play this role for ecology and all or part of the Amazonian forest could be one of them.

5. Messages to remember

rive amazone - hameau - amazonie
Figure 13. Hamlet on the bank of the Amazon (upstream of Macapá, Amapá). [Source: Photo © Alain Pavé]
Let’s go back to the initial questions raised in the introduction:

  • What do we know about it? Despite a major effort over a long period of time, data for the Amazon are still fragmentary and imprecise. The forest is not just a collection of trees, it is an ecosystem with other plants, animals, microorganisms, irrigated by a vast hydrological system, with multiple interactions. Beware of simplistic messages and descriptions that are more poetic than scientific.
  • What knowledge should be acquired and how to do it? In addition to factual data, develop a synthetic, systemic representation of the region to guide the acquisition of environmental data, which also requires continuing the technological effort. Do not hesitate to conduct theoretical reflections.
  • How can they be used to decide and act in the best way on this environment? Model this set to test evolution scenarios, promote adaptive household and stewardship strategies, and define a real engineering of ecological systems.
  • To what benefit? First of all, to the inhabitants of this region, but also to the nations that shelter it, without forgetting the global role of the Amazonian ecosystem (climate and biodiversity), especially the forest, which concerns humanity more broadly.
  • What future for the people who live there? (Figure 13) This future must be “reasoned, chosen and shared”, constantly reassessed and adapted, by implementing dynamic management accompanied by modelling and simulation [46].

 


Notes and references

Cover image. [Source: CNRS, Pavé A. & Fornet G. ref. 3]

[1] The French contribution is mainly made in French Guiana, in collaboration with teams from other countries, notably Brazil.

[2] Over time, sources of error are identified and corrected. This explains the variability of the estimates, 5.5 million km2 is a minimal estimate. General reminder: world area = 510 million km2 (510.067,420), oceans = 362 million km2 (361.8) and land area = 148 million km2 (148.2), forest area (2010) = 4.033 billion ha or 40.033 million km2 (27% of land area).

[3] Pavé A. & Fornet G., Amazonie, une aventure scientifique et humaine du CNRS, Ed. Galaade, Paris. 2010. (in french)

[4] Radiation whose wavelengths range from 400 to 700 nm, causing photosynthesis in plants. The light energy received by the illuminated surface is expressed in µmol.m-2.s-1.

[5] U. Pöschl et al, Rainforest Aerosols as Biogenic Nuclei of Clouds and Precipitation in the Amazon. Science, 329, 2010, 1513-1516; Huisl W. Pöschl U., The Amazon rainforest – a cloud factory. Max Planck Gesellschaft. 2010.

[6] Stephen P. Hubbell et al. How many tree species are there in the Amazon and how many of them will go go extinct? Proc. Nat. Acad. Sci. USA, 105, supp. 1, 2008.

[7] ter Steege H. et al. Hyperdominance in the Amazonia Tree Flora. Science 342, 2013.

[8] Crowther T. W. et al. Mapping tree density at a global scale, Nature 525, 2015, 201-205.

[9] Lewinsohn T.M., Prado P.I. How many species are there in Brazil? Conserv. Biology, 19, 2005, 619-624.

[10] Indeed, the trees remain in place. They are large in size. They have a long life span. Their observation is easier than that of mobile and smaller organisms, such as animals. However, trees move, but the movement is intergenerational: seed dispersal, followed by success or failure of germination and growth according to local bio-ecological conditions. This is how tree populations can migrate during bioclimatic variations.

[11] In fact, new species are regularly discovered in the Amazon. In a WWF report published on 30 August 2017, 381 new species were identified, excluding insects.

[12] Fernando D.B. Espírito-Santo et al. Size and frequency of natural forest disturbances and the Amazon forest carbon balance. Nature Communications volume 5, Article number: 3434, 2014

[13] Lie Fan et al. Satellite-observed pantropical carbon dynamics. Nature Plants, 07/29/2019. And “La biomasse aérienne de la végétation de la zone tropicale n’a plus d’impact positif sur le stockage du carbone

[14] Nascimento L.A. Stockage du carbone dans les sols et dynamique des paysages en Amazonie : l’exemple du Nord-Ouest de l’État de Mato Grosso – Brésil dans le cadre du REDD (Réduction des Émissions par Déforestation et Dégradation).Geography. University Rennes 2, 2015. French. https://www.theses.fr/2015REN20028

[15] Fujisaki K., Perrin A. S., Desjardins T., Bernoux M., Balbino L. C. & Brossard M. (2015). From forest to cropland and pasture systems: a critical review of soil organic carbon stocks changes in Amazonia. Global Change Biology, 21 (7), 2773-2786. ISSN 1354-1013

[16] For more precision on the meta-analysis, we will be able to consult: Makowski D., Synthétiser les connaissances en agronomie. Notes from the Académie d’agriculture de France, 2017. https://www.academie-agriculture.fr/publications/notes-academiques/n3af-2017-3-note-de-synthese-synthetiser-les-connaissances-en

[17] BP (Before Present), BC (Before Christ), AC (After Christ).

[18] Hoorn C. & Wesselingh F (Eds). Amazonia Lanscape and Evolution. A look into the past. Whiley-Blackwell, Oxford, UK, 2010.

[19] Randford T., Could humans cause another Paleocene-Eocene Thermal Maximum? Climate Homenews, 2013.

[20] Schwarz D. Expansions et recul des forêts équatoriales. Pour la Science, 271, 2000.
In this article (in French), we find most of the results presented in the following two references and obtained mainly by the ECOFIT programme “Inter-tropical Forest Ecosystems”, an IRD/CNRS (Environment Programme) initiative, supported by UNESCO.

[21] Poncy O., Sabatier D., Prévost M.F. & Hardy I. The lowland high rainforest structure and tree species diversity, in Bongers F., Charles-Dominique P., Forget P.M. & Théry M. (Eds) ” Nouragues. Dynamics and Plant-Animal Interactions in a Neotropical Rainforest”, Kluwer Acad. 2001, 32-46.

[22] Servant M & Servant-Vildary S. (Eds, 2000). Dynamiques à long terme des écosystèmes forestiers intertropicaux CNRS, UNESCO, MAE, IRD, Paris, 427p. (in French)

[23] Pavé A. Necessity of chance: biological roulettes and biodiversity, C.R. Biologies, 330, 2007, pp. 189-198

[24] The surface area of French Guiana is 84,000 km2 (close to that of Portugal), 75,000 km2 of which is forest (about 50% of metropolitan forests).

[25] Gourlé-Fleury S., Guehl J.M. & Laroussinie O. Ecology and Management of a Neotropical Forest. Lessons drawn from Paracou, a long-term experimental research site in French Guiana. Elsevier, 311p, 2004.

[26] Saint-Jean D. & Pellet E. Explorateurs d’Amazonie. Aventuriers de la Science en Guyane. Ibis Rouge Éditions, 2008 (Preface Alain Pavé). (in french)

[27] http://www.guyane.cnrs.fr/ (in French)

[28] One must be very careful in the use of words, initially having an anthropic meaning: there is no intention behind competition and cooperation in ecological systems. These mechanisms are set up spontaneously.

[29] Norten N., Angarita H. A., Bongers F., Martinez-Ramos M., Granzow-de la Cerda I., van Breugel M., Lebrija-Tejos E., Meave J.A., Vandermeer J., Bruce Williamson G., Finegan B., Mesquita R. & Chazdon R.L. Successional dynamics in neotropical forests are as uncertain as they are predictable. Proc. Nat. Acad. Sci. USA, 112, 8013-8018, 2015.

[30] Anna Roosevelt is one of the most famous archaeologists and ecologists working on the Amazon. It extends a family interest in this region from her great-grandfather Theodore Roosevelt, who was President of the United States (1901-1909) and stayed many times in the Amazon after his two terms. Among Anna Roosevelt’s many publications, we can mention: Roosevelt A.. Twelve Thousand Years of Human-Environment Interaction in the Amazon Floodplain. Advances in Economic Botany, Vol. 13, New York Botanical Garden. pp. 371-392, 1999.She was a member of the Scientific Committee of the Amazon Programme of the CNRS.

[31] Reich D. et al. Reconstructing Native American population history. Nature, 488, 370-375, 2012. This work was supported by the CNRS Amazon Programme.

[32] Rostain S., Amazonie : les 12 travaux des civilisations précolombiennes. Belin, Paris, 2017; & Rostain S., Amazonie un jardin sauvage ou une force domestiquée. Essai d’écologie historique.. Actes Sud, wandering, 2011.

[33] Molino J.F., Mestre M. & Odonne G. La biodiversité de l’Amazonie, un héritage des Précolombiens ? Research, 527, 67-71, 2017.

[34] Jérémie S., Dambrine E.. Impact des occupations amérindiennes anciennes sur les propriétés des sols et la diversité des forêts guyanaises. In, Alain Pavé and Gaëlle Fornet, Op. Cit. (in French)

[35] McKey D., Rostain S., Iriarte J., Glaser B., Birk J.J., Holst I. &Renard D., “Pre-Columbian Agricultural Landscapes, Ecosystem Engineers, and Self-organized Patchiness in Amazonia”, Proc. Nat. Acad. Sci. USA, 107, 2010, p. 7823-7828. CNRS press release, March 13, 2010.

[36] The International Centre for Tropical Agricultural Research in Cali, Colombia, maintains a living collection of about 5000 varieties. These collections are one of the ways to maintain biodiversity.

[37] In 1997, during a television show, I was much more optimistic, 20 years after having increased my Amazonian experience I am much more reserved… You can find this extract in the WEB page: http://www.cnrs.fr/cw/dossiers/dosbiodiv/index.php?pid=decouv_chapC_p3

[38] http://www.epoc.u-bordeaux.fr/index.php?lang=frage=eq_ea_flash01 and the summary document: https://hist-geographie.dis.ac-guyane.fr/…/2d1_les_defis_de_la_sante_en_guyane.doc (in French)

[39] Renca (Reserva Nacional do Cobre e Associados) was created in the early 1980s for future mining. In the absence of this exploitation it has become a de facto nature reserve. This status was threatened in 2017 by then Brazilian President Michel Temer. In the face of national and international protest, the status was maintained.

[40] Raby M. The Colonial Origin of Tropical Field Station. Am. Scientist, 105, 216-223, 2017.

[41] Legay J.M. & Barbault R. (Dir.). La révolution technologique en écologie. Masson, 1995. (in French)

[42] Pavé A., Comprendre la biodiversité, vrais problèmes et idées fausses. Threshold Edition, 2019. (in French)

[43] Worster D. The Wealth of Nature, Environmental History and the Ecological Imagination. Oxford University Press, 1993.

[44] These two pre-Socratic philosophers lived well at the same time, but were very distant from each other. Elée, in the south of present-day Italy, for Parmenides, and Ephesus, on the west coast of this Turkey, for Heraclitus. This debate, undoubtedly virtual, has been reconstructed from the writings of these two philosophers and those who were inspired by them. Broadly speaking and in current terms, Parmenides defended the idea of a stationary world, with observed movements and changes responding to permanent mechanics. Heraclitus had a conception of a world in constant evolution (“you never bathe twice in the same river“), with often chaotic dynamics. This debate has implicitly marked the history of ideas, it is even still very present, especially in ecology (see, the previous reference).

[45] Casseta E & Delors J (Eds). La biodiversité en question. Enjeux philosophiques, éthiques et scientifiques. Editions Matériologiques, 2014, Paris. (in French)

[46] Multi-agent technology has already proven its effectiveness, particularly in modelling socio-ecosystems. The concept of accompanying modelling seems well suited to this type of situation. Ref. : Collectif Comod, La modélisation comme outil d’accompagnement, Natures Sciences Sociétés, 13, 165-168, 2005 (in French). It is not out of place to also draw inspiration from the work of automation engineers, who are curiously little known outside the field of industrial engineering. In the 1980s, in Rhône-Alpes, the cooperation initiated between biometricians in Lyon and scientists specialists of automatic control, in Grenoble, extended within the Edora club of Inria, was very effective, particularly in establishing this cooperation.


环境百科全书由环境和能源百科全书协会出版 (www.a3e.fr),该协会与格勒诺布尔阿尔卑斯大学和格勒诺布尔INP有合同关系,并由法国科学院赞助。

引用这篇文章: PAVE Alain (2019年10月21日), Amazonia: a huge ecosystem in constant evolution, 环境百科全书,咨询于 2024年7月27日 [在线ISSN 2555-0950]网址: https://www.encyclopedie-environnement.org/en/life/amazonia-ecosystem-constant-evolution/.

环境百科全书中的文章是根据知识共享BY-NC-SA许可条款提供的,该许可授权复制的条件是:引用来源,不作商业使用,共享相同的初始条件,并且在每次重复使用或分发时复制知识共享BY-NC-SA许可声明。