沙子:液体还是固体?

Encyclopédie environnement - sable - couverture

  沙子是我们周边的一种常见材料,虽然在人们的印象中沙子似乎只是辽阔海洋的边框纹饰,但实际上它们还是制造混凝土的一种基本材料。除此之外,沙粒也是土壤的重要组成成分。正因为如此,每一个岩土工程师对沙子都十分熟悉。沙子源自结晶岩的分解,组成沙子的颗粒排列无序,因而形成了独特的性质,经常作为阐释颗粒材料的典型例证。本文在回顾沙子的起源后,对其中的一些特性进行了介绍。

1. 沙子从何而来?

环境百科全书-沙子-岩石蚀变
图1. 沙子作为某些岩石蚀变的最终产物,普遍存在于山地景观中。

  沙子是许多岩石分解的最终产物,特别是由晶粒组成的深结晶岩浆岩。花岗岩[1]是这类岩石的典型代表,它是大多数高大山脉主峰的岩体,如勃朗峰(Mont-Blanc)、埃克兰峰(Ecrins)、安宾峰(Ambin)、阿真泰拉峰(Argentera)等。侵蚀是物质在破坏性因素(以气候为主)作用下老化的必然结果,岩石受侵蚀作用破碎成较小的颗粒,最终分解成原岩中各种晶粒的颗粒集合体(图1),这种集合体被称之为花岗岩沙土granite arena)。以花岗岩为例,它由云母晶体、长石晶体和石英晶体组成,但由于持续的物理化学蚀变,通常只有石英颗粒能留存下来,形成河岸和海滩上的沙子。

2. 颗粒的故事

环境百科全书-沙子-样品
图2. 实验室中的沙子样品。这一小撮沙子含有数十亿粒二氧化硅。[来源: By Daniel Ventura, Own work, CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

  沙子是一种由石英晶粒组成的颗粒材料(图2),可以形象地将它看作是一堆相互挤压的小球,小球可以滑动和滚动。但实际上,很少有沙粒是像弹珠一样的球体。沙粒通常呈不规则形状,有些带有棱角,还有一些呈条状;其表面可能是平面,也有可能是球面。粒径也是沙子的重要参数,不同沙粒的粒径各异,通常从几十微米[2]到几厘米不等,对沙粒粒径分布的研究称为粒度分析(granulometry)。如果把沙子平铺开,由于颗粒大小不等,较大颗粒之间的空隙会被较小的颗粒填充,以此类推,使得相邻颗粒之间几乎没有空隙。在相同的体积下,如果颗粒间的空隙占总体积的比很小,则为密砂;相反则为松砂。

  岩土工程师们因为土木工程(如道路、建筑物、水坝、近海工程等)而关注土壤。对这些工程而言,沙子的紧实度至关重要,因为密砂和松砂有着不同的力学行为(即在给定荷载作用下土壤的形变方式),对于绝大多数土木工程而言,严格控制地面形变,确保不超过给定阈值是至关重要的。

3. 固体、空气与水

环境百科全书-沙子-状态图
图3. 水分在土壤中的不同状态图:(a)吸湿态(hygroscopic regime),(b)薄环态(pendulum regime),(c)条索态(funicular regime),(d)毛管态(capillary regime)。[来源: Based on Luc Scholtes (2008): Micromechanical modelling of partially saturated granular media. Doctoral thesis, Engineering sciences [physics], Institut National Polytechnique de Grenoble]

  土壤中的沙层一般不会只由固体颗粒和空气组成,颗粒之间的空隙往往会全部(处于饱和状态)或部分(见图3)被液体填充,通常是水,有时也可能是碳氢化合物,如加拿大的油砂。液体的存在极大地改变了沙子的力学行为。当沙粒间的空隙中存在水分时,就会产生一种作用力(称为毛管力,capillary),使沙粒相互吸引,使土壤表现出粘聚性cohesion),这也是沙堡能够堆积形成带有垂直墙体的原因!如果沙子被水分饱和(例如在涨潮的时候),毛细管作用就会消失,沙子的粘聚性随之丧失,沙堡就会倒塌。

  流体的存在还会促进沙的蚀变及物理化学转变过程,使颗粒间产生牢固的连接,这种连接加强了沙粒之间的结合,形成了土壤的机械抗性(mechanical resistance)。如果这种固结作用(consolidation)在地质时间尺度上持续进行,就会形成成岩过程(diagenesis),最终形成砂岩(grès)。

4. 对于粒状结构的信心

  自18世纪 C.A. Coulomb关于摩擦力的奠基性工作(参见“什么是库伦摩擦力定律?”)以来,沙子作为颗粒材料的典型代表一直备受土力学界关注。三个世纪过去了,我们还没有完全了解这类材料的奥秘,它有时像“真正的”固体一样坚实,有时又像液体一样易变。请想象一下流沙!更具灾难性的是,在地震中沙质土层最主要的问题是土壤液化。土壤一旦发生液化,就无法稳固支撑地表的各种建筑物,导致建筑物坍塌。

环境百科全书-沙子-微结构
图4. 颗粒集合体中的微结构。当集合体受到机械压力时,就会形成优先颗粒链(preferential grain chains)(左图,用光弹颗粒(photo-elastic particle))进行的实验室测试;右图,采用离散元法的数值计算结果)。[来源: Based on Huaxiang ZHU (2015): Consideration of an intermediate scale in micro-structural modelling of granular soils. Doctoral thesis, Engineering sciences[physics], Institut National Polytechnique de Grenoble]

  简而言之,作为一种颗粒材料,沙子的复杂性主要源于以下两个方面:

  • 一方面,沙粒可以通过颗粒的滑动或滚动重新排列,使得沙粒间空隙减少或增加,从而改变了沙子的结构。这种颗粒的相对运动受颗粒间的摩擦系数(符合库仑定律)和颗粒形状控制。
  • 另一方面,即使很小体积的沙子也包含了极大数量的颗粒(一把沙子可能含有数十亿颗沙粒),颗粒间相互接触,形成了多变的结构样式,如大小和形状多样的团簇结构,团簇结构之间通过各种颗粒链相连接(图4),沙子在群体中表现出几何复杂性,这是一种大数量效应,不论是在生物还是非生物领域中都能观察到。沙子最为独特的性质之一是剪胀性dilatancy见“What is sand dilatancy?”),反映受到剪应力作用下沙子体积增大的现象,这也部分源于大量沙粒的集体效应。

  从沙子的最基本结构出发,通过研究沙粒、几个沙粒构成的基本团簇结构,可以深入理解沙子的行为。这条回归本源之路的研究已经取得了丰硕的成果,当前砂土工程研究面临主要挑战之一就是如何沿着这一方向继续深入。由于工程师的工作尺度可达数十米以上,而研究者则深入到颗粒集合体的尺度开展研究,两者之间存在着巨大的尺度差异,解决这一问题也是一项真正的智力挑战。

 


参考资料及说明

封面图片:留尼汪岛 [© François Nicot]

[1] 花岗岩类是指以花岗岩为代表的一个科。Belledonne地块(Isère)的片麻岩或角闪石属于此科。

[2] 微米比毫米小一千倍:1毫米=1000微米。


环境百科全书由环境和能源百科全书协会出版 (www.a3e.fr),该协会与格勒诺布尔阿尔卑斯大学和格勒诺布尔INP有合同关系,并由法国科学院赞助。

引用这篇文章: NICOT François (2024年3月4日), 沙子:液体还是固体?, 环境百科全书,咨询于 2024年7月27日 [在线ISSN 2555-0950]网址: https://www.encyclopedie-environnement.org/zh/sol-zh/sand-fluid-or-solid/.

环境百科全书中的文章是根据知识共享BY-NC-SA许可条款提供的,该许可授权复制的条件是:引用来源,不作商业使用,共享相同的初始条件,并且在每次重复使用或分发时复制知识共享BY-NC-SA许可声明。

Sand: fluid or solid?

Encyclopédie environnement - sable - couverture

Sand is one of the common materials in our environment. Symbolically attached to the seaside frame, it is nevertheless one of the basic materials used to make concrete. In addition, it is one of the elementary components of soils, and as such it is familiar to any geotechnical engineer. Born from the decomposition of crystalline rocks, it is often presented as a particularly illustrative example of granular materials, where the disordered arrangement of its grains will give it quite unique properties. This article proposes to review some of these properties, after recalling the origin of sand.

1. Where does the sand come from?

Encyclopédie environnement - sable - sable altération roche - sand - alteration rocks sand
Figure 1. Sand, as the ultimate state of alteration of certain rocks, is very present in the landscape of mountain ranges.

Sand is the ultimate state of degradation of many rocks, particularly magmatic rocks formed by deep crystallization, consisting of grains. Granitic rocks [1] are an excellent example, they are the main peaks of most high alpine massifs (Mont-Blanc, Ecrins, Ambin, Argentera). Erosion, an inevitable consequence of the ageing of the material under the influence of aggressive agents (mainly climatic), breaks down the rocks into smaller elements until they decompose into a granular assemblage, where the grains of the original rock are found (Figure 1). This assembly is called the granite arena. For example, for granite, we find mica crystals, feldspar crystals, and quartz crystals. Due to the ongoing physico-chemical alteration, only quartz grains often persist, forming the sand on riversides or beaches.

2. A story of grains

Encyclopedia environment - sand - sand sample
Figure 2. Example of a sand sample in laboratory. This handful of sand contains billions of grains of silica. [Source: By Daniel Ventura, Own work, CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons
Sand is therefore a granular material, constituted by an assembly of quartz grains (Figure 2). Symbolically, it can be represented mentally as a pile of balls, which collide with each other, slipping and rolling. But in addition, grains of sand are very rarely spheres like marbles. The grains are often irregular, sometimes angular or elongated; they may have flat facets or be rounded. Grain size is also an important parameter. Not all grains are the same size. Typically, in a sand, the grain size ranges from a few tens of micrometers [2] to a few centimeters. This is called granulometry. When spread out (i.e., when there are a multitude of different grain sizes), the medium will have few voids between the grains. The smaller grains are positioned between the larger ones, filling in the gaps, and so on. Dense sand will be used when, for a given sample volume, the proportion of the void volume between the grains is small. Otherwise, we’ll talk about loose sands.

For the geotechnician, who is interested in soils in anticipation of future civil engineering works (construction of a road structure, a building, a dam, an offshore structure), the density of the sand that constitutes the soil is of paramount importance, because the mechanical behaviour (i.e. the way in which the soil deforms under the action of a given load) will not be at all the same whether the sand is dense or loose. And for most civil engineering works, it is essential to avoid that the ground deforms beyond a very strict limit!

3. Solid, air and water

Encyclopedia environment - sand - diagram different water states in soil
Figure 3. Diagram of the different water states in soil: (a) hygroscopic regime, (b) pendulum regime, (c) funicular regime, (d) capillary regime. [Source : Based on Luc Scholtes (2008): Micromechanical modelling of partially saturated granular media. Doctoral thesis, Engineering sciences[physics], Institut National Polytechnique de Grenoble]
Sand in soils is rarely composed only of solid grains and air. Indeed, voids between grains can be filled by a fluid (often water, but sometimes also hydrocarbons as in Canada’s oil sands). This fluid can fill all the voids (the sand is then said to be saturated), or only part of the voids (Figure 3). The presence of a fluid profoundly modifies the mechanical behaviour of sandy soil. If the voids between the grains contain some water, then forces (called capillaries) develop between the grains, exerting between them an attractive effect, responsible for the cohesion of the sample. That’s how you can build a sand castle, with vertical walls! If the material is saturated (which happens when the tide rises), the castle collapses, due to the disappearance of capillary forces, and thus the cohesion of the material.

In addition, the presence of a fluid in the sand can promote alteration and physico-chemical transformation processes, leading to the formation of solid bridges between the grains. A kind of cement appears between the grains, which improves the mechanical resistance of the soil. When this phenomenon of consolidation continues over very long periods of time on a geological time scale, we will speak of diagenesis, leading to the formation of a rock called grès.

4. In confidence of a granular material

Sand, as an example of granular material, has been a constant concern for soil mechanics since the 18th century with the founding work of C.A. Coulomb (see What is the Coulomb friction law?). Three centuries later, the light remains partial on all the mysteries that this material holds for us. Sometimes resistant like a “real” solid, sometimes fluid like a liquid. Think of the quicksand! More catastrophically, we keep in mind the major disorders that occur during an earthquake on sandy soils: the soils liquefy, no longer allowing the stability of the structures they support, leading to their ruin.

Encyclopedia environment - sand - microstructure within a granular assembly
Figure 4 Existence of a microstructure within a granular assembly. Preferential grain chains develop when the assembly is subjected to mechanical loading (left, laboratory test from photo-elastic particles; right, results obtained by numerical calculation using a Discrete Element Method). [Source : Based on Huaxiang ZHU (2015): Consideration of an intermediate scale in micro-structural modelling of granular soils. Doctoral thesis, Engineering sciences[physics], Institut National Polytechnique de Grenoble]
Without going into all the details, the complexity of sands, as a granular material, comes from two aspects:

  • On the one hand, rearrangement between grains, which can slide or roll relative to each other, modifying the granular structure (by decreasing or increasing voids between grains). This relative movement between the grains is controlled by the coefficient of friction between the grains (through Coulomb’s law), and the shape of the grains.
  • On the other hand, the colossal number of grains contained even in a small volume (a handful of sand can contain billions of grains!). This results in a geometric complexity (effect of large numbers, observable in any large population, living or material), which can be perceived in the variety of entanglement patterns formed by the grains in contact, drawing kinds of grain chains in the middle of highly variable clusters, sizes and shapes (Figure 4). One of the most singular properties of sands, and which results in part from a collective effect, is dilatancy (see What is sand dilatancy?), reflecting the ability of a sand sample to increase in volume when subjected to shear stress.

One of the major current challenges for sand soil engineering is to pursue this fruitful path of understanding the behaviour of sands, by returning to their granular structure at the most elementary scales: that of the grain, or an elementary cluster of a few grains. Between the scale of the engineer, which extends to a few dozen metres, and that of the researcher, which goes down to the heart of the assembly of the grains, there is a disjunction whose resolution constitutes an authentic intellectual challenge.

 


References and notes

Cover photo: Reunion Island [© François Nicot]

[1] Granitic rocks refer to a family, of which granite is a representative. The gneiss or amphiboles of the Belledonne massif (Isère) belong to this family.

[2] A micrometer is a thousand times smaller than a millimeter : 1 mm = 1000 μm


环境百科全书由环境和能源百科全书协会出版 (www.a3e.fr),该协会与格勒诺布尔阿尔卑斯大学和格勒诺布尔INP有合同关系,并由法国科学院赞助。

引用这篇文章: NICOT François (2019年2月7日), Sand: fluid or solid?, 环境百科全书,咨询于 2024年7月27日 [在线ISSN 2555-0950]网址: https://www.encyclopedie-environnement.org/en/soil/sand-fluid-or-solid/.

环境百科全书中的文章是根据知识共享BY-NC-SA许可条款提供的,该许可授权复制的条件是:引用来源,不作商业使用,共享相同的初始条件,并且在每次重复使用或分发时复制知识共享BY-NC-SA许可声明。