气候变化与古代文明

civilisation maya - pyramide kukulkan

  历史上辉煌文明的兴衰往往与气候条件的变化紧密相连。这样的联系是有意义的:正常的农业生产对历史文明发展至关重要,而农业生产对气候条件的变化(尤其是水资源供应)十分敏感。通过考古学家的工作我们能更好地了解这些文明的历史;而古气候学的研究则帮助我们重建过去的气候变化,并将水平衡的变化与可能改善或降低人类生境的变化联系起来。本文列举了一些案例来阐述历史时期人类定居点的变化与过去千年标志性气候变化事件之间的联系,并据此提出问题:反复出现的干旱事件如何导致苏美尔和玛雅文明走向衰亡?小冰期对欧洲和亚洲部分地区的人口有何影响?

1. 第一批古城的出现受益于气候条件

  宏伟的古城通常是原始文明的中心。从世界地图上看,它们之中的大部分都位于热带地区(图1)。这种看起来并不像偶然的地理分布,促使我们提出以下假设:古城的选址是由于当时当地的居民需要大量的农业生产来满足生存需求。

  地方性农业(Endemic agriculture)是这些文明的基础(例如):

  • 玉米之于前哥伦布文明,
  • 大米之于亚洲人民,
  • 大麦和小麦之于最早的东西方城邦。

  这些农业生产不仅需要大量的水(一段湿润的时期),而且还需要有一个干燥的时期。热带到亚热带地区夏季降雨量最大,而冬季为旱季;这样的气候特征为这些作物提供了良好的水文条件。

  最大降水量对应于热带辐合带(Intertropical Convergence Zone,ITCZ; 图1)之上。热带辐合带是一个在自东向西延伸、随季节交替做明显的南北位移的狭窄气候带(参阅 急流)。这种迁移发生在热带之间(20°N和20°S之间),大致在太阳直射点的活动范围内。冬季作为一年中的旱季限制了全年的总供水量,避免了农作物被淹。尽管温度对作物起着决定作用,但剧烈变化的水文条件受温度的影响并不是特别明显。

环境百科全书-气候变化与古代文明-文明发源地和季节波动的强降雨气象区分布图
图1. 文明发源地和季节波动的强降雨气象区分布图(ITCZ)。红线环绕的为古文明第一个中心的延伸区域。星代表着地方性农业的发达地区(V. Boqueho,参考文献[1])。背景图:当今一月(蓝色区域)和七月(粉红色区域)热带辐合带(intertropical convergence zone, ITCZ)的位置 [来源:Mats Halldin, 2006, via Wikimedia commons [公共知识领域 Public domain]]。

  文森特·波奎奥(Vincent Boqueho)在其著作《耐气候文明Les civilisations à l’épreuve du climat[1]中强调了季节性温度变化的重要性(一年中的某一时段低于某一阈值)。据他介绍,低温限制了几种由寄生虫携带、在高温下扩散的微生物源疾病的发展。高供水量、干湿交替、低温期这些条件的组合,大大缩小了有利于作物产量最大化的地理范围。在更大的区域尺度上,海拔升高有助于温度降低。图1作为波奎奥(Boqueho)的工作成果,一方面展示了得益于理想气候条件的地方性农业,另一方面展示了第一批辉煌文明出现的地区,二者在地理空间分布上有着惊人的重叠。

  只有地中海文明超出了“新月沃土(fertile crescent)”,在更广阔的地区得到了发展。东方民族可能是在早期美索不达米亚文明剧变之后从中东迁移而来。对西方而言,直到在阿拉伯半岛北部建立起了第一个定居点后,这些民族才迁移到了地中海盆地这个十分利于海上贸易的地区。

  无论是东方、西方、亚洲还是美洲印第安人,主要文明中心的位置在一定程度上都是由热带纬度区有利的气候条件所决定的。尤其是在地中海和山地气候中,这种情况更为常见。但是,这些气候条件在区域范围内也是有所波动的,尤其是与热带辐合带的季节波动有关。古气候的重建使我们能够确定不同地区的气候变化。我们是否能将这些变化与人口的变迁联系起来?在此,我们试图通过不同时期和不同大陆的例子,来说明气候的自然演变如何影响人类文明的建立、发展、衰退或迁移。

2. 过去千年气候带的迁移

  这些文明的建立和发展发生于几千年前。第一个亚洲文明(第一次对水稻的精耕细作)和东部文明(美索不达米亚)出现于大约公元前(BC)5000年至4000年;第一个中美洲文明出现于公元前3000年至2000年。据此推算,这些(文明)定居点出现于距今7,000到4,000年的时期[2]

  理论上讲,本文所指的日期指的是公历(Gregorian calendar)(以 “零”年为基准,“公元前”(B.C.)和 “公元纪年”(A.D.)分别表示零年之前和之后的年份。)。这些年份也可以用相对于当前参照物的年限(age)来表示:B.P.(Before Present)表示使用公元1950年作为参考,B2K(Before Year 2000)以公元2000年为参考。因此,4000 BC对应为5950 BP。

  如何重建过去这段时期的气候变化,这项工作对我们有何启示?根据自然档案,对过去的气候进行重建的科学家被称为古气候学家(paleoclimatologists)。在热带地区,这些专家们重点分析了过去几千年中不同时间尺度上热带辐合带(ITCZ)的迁移规律,并据此首次提出ITCZ在过去6000年中的整体向南迁移的观点(参考文献[2])。

  最近,较短时间尺度(达数十年)的ITCZ迁移已被研究证实,特别是在所谓的冰河世纪早期(Early Ice Age)[3]。这时气候变化可以归因于许多因素,比如日照(sunstroke)的变化,一些大型火山的爆发,受到海洋和大气环流之间反馈机制的放大影响等等[4]。自距今6000年始,这个转折点就或多或少与前文所提到的最初的一些文明中心相对应,在那些地区,人们找到了适合自己发展的最理想的气候条件。而自然档案(如湖泊或海洋沉积物,或洞穴石笋)则证实了水平衡在这时发生了显著的变化,并且这些变化一定影响了人类赖以生存的农业资源。(那么,)又有哪些证据表明这些文明受到了气候变化的影响呢?

3. 苏美尔文明

环境百科全书-气候变化与古代文明-苏美尔文明
图2.(a)近东地区现代降雨分布以及一些古代城市的位置。 (b)左:阿曼湾M5-422海洋岩心沉积物白云石含量的变化。这种矿物的存在证明该大陆处于干旱时期(灰色带)。右:由拉兰遗址(Tell Leilan)(叙利亚)的发掘结果推导出的阿卡德帝国(Akkadian Empire)年表。[左图改编自 Geyer and Sauvage, 背景地图: Виктор В CC BY-SA 2.0 (https://creativecommons.org/licenses/by-sa/2.0)] ;右图改编自 Cullen et al., 2000, 参考文献[5]]

  第一个案例是苏美尔文明,该文明曾在底格里斯河和幼发拉底河之间的美索不达米亚繁荣发展(图2a)。早在公元前7000年就有人占领了这个地区,远比公元前3500年左右苏美尔人的兴盛要早。苏美尔文明取得了一些人类文明史上的重大进步,比如车轮和楔形文字的发明,以及像乌鲁克这样的巨型城市的发展(图2a)。

  为了养活城市居民,国家必须确保大量的农业生产。这一方面需要依赖文字(writing),因为文字可以更好地对资源进行统计和管理(例如农作物、场地、动植物统计);另一方面同样也依赖于河流的开发利用,以保证必要的水供应。这里的大河由位于安纳托利亚以东、肥沃新月北部的高加索(Transcaucasian)山脉提供水源(图2a)。目前,这些山脉每年的降水量在0.6到1米之间,足以形成大型河流(图2a)[5]。如果5500多年前的气候状况与今天的状况大致相同,那么这样的气候条件一定有助于当时农业的繁荣发展,从而推动苏美尔文明的进步。

  苏美尔文明在公元前2334年左右经历了一个转折点:新统领萨尔贡国王把各个城市聚集在新首都阿卡德之下,建立了阿卡德帝国。然而,一个世纪后,也就是大约4100年前,这个帝国似乎遭遇了一次重大挫折。人们常用“阿卡德帝国的崩溃(collapse of the Akkadian empire)”一词来形容大城市在整个地区失去政治影响力,或是描述大型武力冲突和大量城市人口的流失。但通常来讲,4100年前后的这次崩溃并不是真正意义上的 “崩溃”,因为300年后该地区仍有阿卡德帝国统治的痕迹。

  关于这段时期,气候记录对我们有何启示呢?地质记录表明,在现今叙利亚的拉兰遗址(Tell Leilan)地区[6]和阿曼湾的海洋沉积物中存在大量的粉尘沉积物(参考文献[5])。海洋沉积物的年代约为距今3900至4150年(图2b)。这些沉积物表明气候状况的迅速变干。一些文字记录描述了当时十分艰难的农业生产条件,表示重大的气候变化对农业产生了巨大的影响,从而影响阿卡德帝国的统治。从气候角度来看,美索不达米亚的干旱化与北大西洋表层海水的冷却有关,这种大气联系(atmospheric link)也已被证明适用于当前的气候。古气候记录显示,距今4100年左右北大西洋的温度下降了约1到2℃[7]

  当然,气候不是唯一导致阿卡德帝国衰落的原因。不过,这些重大的气候变化不可避免地对农业产生了影响,使其难以满足人们的需求。种种难题毫无疑问导致了城市之间的冲突和政治权力的不稳定。

  这一气候事件似乎影响了整个热带区,其可进一步细分为距今4200年左右 和距今3900 年左右两个阶段[8],并导致了部分地区的干旱事件和另一些地区的强降雨事件。这些气候事件的影响规模如此之大,以至于它现在被用于定义一个最新的全新世分层地层参考点,命名为梅加拉亚期(Meghalayan)[9]

4. 玛雅文明

环境百科全书-气候变化与古代文明-玛雅文明
图3.(a)尤卡坦半岛(主要在墨西哥,大致15ºN-20ºN)地区的现代降雨分布以及一些古代遗址的位置。 (b)来自尤卡坦州蓬塔拉古纳湖的甲壳动物壳的同位素组成:正值对应由灰色带突出显示的干旱事件。右侧为尤卡坦半岛玛雅人定居点文化发展阶段的对应年代。 (来源: 左图改编自 Lachniet et al. 2013, 背景地图:Addicted04; 右图改编自Curtis et al. 1996[10])

  美洲大陆孕育了许多伟大的文明,它们随时间流逝在不同的地区接力更替。玛雅文明统治着整个尤卡坦半岛,即墨西哥南部的大部分区域(图3a)。历史学家确定了玛雅文明发展的三个阶段(图3b):

  • 前古典时期(preclassical period):公元前2000年至公元250年;
  • 古典时期(classic period):公元250年至公元900年,在该时期玛雅文明达到顶峰;
  • 后古典时期(post-classical period):大城市开始衰落,人口流失并重新聚集在分散的村庄。这种衰弱促使北方民族,如托尔特克人的到来,并在半岛北部建立了新的城市。

  在前古典时期,玛雅人在小村庄定居并开始改造环境。他们清理丛林并种植第一批以玉米为主的农作物。对于苏美尔和阿卡德文明来说,这种发展是由精确的文字系统和历法支持的,这使得他们能够更好地管理农业生产。

  随着以“神王(king-divine)”为中心的强大政治和宗教统治的建立,蒂卡尔(Tikal)(图4)、卡拉克穆尔(Calakmul)或帕伦克(Palenque)等城邦(city-states)陆续出现,并试图在半岛各地区扩大其的统治范围。随后,这些城市之间开始了战争与同盟这样的微妙互动,建立了许多非凡的庙宇和金字塔,周围越来越多的居民也前来寻求庇护[11]。城市密度的增加使得农作物开垦面积扩大,这显然加速了古典时期的森林砍伐速度。

环境百科全书-气候变化与古代文明-玛雅遗址
图4. 至日(the solstice)庆典期间蒂卡尔(危地马拉)的玛雅遗址 [来源: Bjørn Christian Tørrissen[CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)]

  森林的砍伐使得半岛的地质基岩裸露出地表。这里是一个喀斯特石灰岩高原,雨水的渗透性很高。除非有大量的植物覆盖,土壤才能储存雨水。此外,中美洲这一地区的降水量直接取决于引言中介绍的热带辐合带(ITCZ)的地理位置。随着ITCZ的季节波动,该地区夏季为雨季,冬季为旱季(见图1和图3)。每年雨季的到来和大量土壤的存在,保证玛雅文明能最大限度地利用开发农业用地所必须的需水量。

环境百科全书-气候变化与古代文明-天然井
图5. Cenote(天然井),位于墨西哥奇琴伊察的天然水库,尤卡坦半岛的“ Cenote de los Sacrificios”。

  为了重建这种水平衡演化,(人们)收集了尤卡坦半岛北部[12][13]和中部[14][15]许多地点的湖泊沉积物,并在委内瑞拉北部收集了一些海洋沉积物[16]。这些记录证实在公元800年到900年之间这里存在数个持续数年至数十年的干旱时期(图3b)。这与ITCZ的南移,阻碍了夏季降雨向北以及玛雅土地的灌溉有关。尽管人工建造的储水设施以及天然水库“cenotes(天然井)”,已经让玛雅文明构建起了非常完善的地表储水系统,但严重的水文赤字还是影响了作物产量。事实上,历史学家也注意到在同一时间各“城邦”之间的政治紧张局势加剧,城市人口大量外流。尤卡坦中部地区大城市领导权的瓦解标志着古典时期的结束,一般也被视为玛雅文明的“崩溃(collapse)”。但“崩溃”这一术语在此无疑又是一种滥用,因为玛雅人和文化仍然存在,只是他们要么融入了诸如半岛北部的新文化之中,要么在孤立的小型聚落中生存。

  与前一个案例的背景截然不同,如果气候变化不是文明不稳定的唯一原因,那么气候变化和文化剧变这两个事件的时间性耦合可能加速了人类社会运转的激变进程,使其可持续发展受到挑战。

5. 小冰期(Little Ice Age)的影响

环境百科全书-气候变化与古代文明-冰冻的伦敦泰晤士河
图6. 冰冻的伦敦泰晤士河,由亚伯拉罕·洪迪乌斯(Abraham Hondius)创作于1677年,现藏于伦敦博物馆[公共知识领域 public domain]。这幅画被认为是17世纪英国小冰期的象征。

  在小冰期,其它大陆上的文明也遭到了重创:如政治权力的丧失、持续的武装冲突以及部分人口流向其他地区。对环境记录的回顾帮助我们厘清这些文明遭受重创时的主要气候变化。我们发现:在格陵兰岛上的维京文明和柬埔寨高棉文明(其中的一座大城市拥有雄伟的吴哥寺庙)这两个文明中,人们都在13世纪左右毫不留情地抛弃了这些(文明所在的)地方。在这两个案例中,他们所遇到的经济问题(根源于政局不稳或简单的生存问题),也可以用重大的环境变化来解释(与所谓“小冰期”的气候变化有关)。

  小冰期(图6)大约为14世纪到19世纪。在此期间,太阳活动减弱和强烈的火山爆发持续地影响着全球气候(包括降温)[17]。在14、15、17和18世纪太阳活动的持续减弱,加之火山喷发,导致了北大西洋温度显著下降和大气环流的改变这与几份气候档案均描述的ITCZ的南移有关。

5.1. 格陵兰岛的寒冷气候

环境百科全书-气候变化与古代文明-维京人遗迹
图7. 位于布拉塔赫利茲(Brattahlid)(格陵兰)的维京人遗迹 [来源: Gordontour via Flickr (CC BY-NC-ND 2.0)]

  在约1000年的所谓中世纪温暖时期(medieval optimum period),维京人的祖先因政治事件(Eric the Red’s exile,红发埃里克的流放)被驱逐流放,并最终定居在当时气候条件适宜的格陵兰岛。这里有利的自然条件允许维京人建造带有牛羊牧场的村庄(图7)。

  由于小冰期大气和海洋温度下降,冰川逐渐发展,这些在冰岛和格陵兰岛附近的冰盖和海洋沉积物等环境记录中都有记载。这些变化让维京人陷入困境:迫使他们要么选择改变生活方式和饮食习惯来适应环境变化,要么就得在公海(open sea)上寻找更适合的居住环境。他们曾尝试转向以渔业和海洋资源为基础的经济[19],但最终他们还是离开了这片不再适合生活的土地,返回到斯堪的纳维亚半岛或在美洲大陆的北部海岸殖民。格陵兰岛发现的最后一批维京人墓葬的日期大约在公元1430年左右(参考文献[18])。

5.2. 东南亚的干旱气候

  在东南亚这个完全不同的(气候)背景中,高棉文明(Khmer civilization)曾遍布柬埔寨领土,并在吴哥遗址上建造了一流的建筑群。最早的建筑可追溯到9世纪。由于气候稳定,建筑的扩张速度随着12世纪吴哥窟(Angkor Wat,图8)和吴哥城(Angkor Thom)的修建而加快。人们在旱季和雨季的交替之中储存充足的雨水,用以灌溉农作物和养活不断增长的人口。正如在其他文明中所发现的那样(如第四部分中的玛雅文明),当时所建设的水利工程非常出色:多个面积超过50 km²的蓄水库与绵延数百公里的运河和堤坝网络相连。

  从鼎盛时期到14世纪,高棉帝国的影响力辐射至东南亚的大部分国家。历史学家指出,大约在15世纪高棉帝国的统治力急剧下降,直到吴哥寺被弃置。这一衰落期大致相当于冰河世纪早期(Early Ice Age period)。

环境百科全书-气候变化与古代文明-被洼地包围的吴哥窟庙宇鸟瞰图
图8. 被盆地包围的吴哥窟庙宇鸟瞰图 [来源: Steve Jurvetson from Menlo Park, USA [CC BY 2.0]

  由于热带辐合带南移,东南亚地区的季风机制发生了变化,进而影响了该区的气候条件。中国地区几处石笋的化学研究和一个吴哥调整池(Angkor retention basins)沉积序列的详细研究均表明13、16和17世纪降水量显著下降[20][21]。连续的大旱,时而伴随着强降雨,可能严重破坏了水利网络,因为建在柔软地面上,此网络对水文变化非常敏感。农业生产和粮食供应受到影响,可能进一步导致了吴哥城市地区的人口大规模外流,以及当地政治和宗教力量的衰落。无论如何,这些气候变化和高棉帝国演变间的关联是非常显著的。

  可以看出,由于地理位置不同,冰河世纪早期的气候变化有着不同的表现形式:北大西洋沿岸地区的气温降低,而东南亚地区则是降水量降低。据报道,在太平洋地区,新西兰山谷的冰川显著发展[22],而塔希提岛(Tahiti)[23]和加拉帕戈斯群岛(Galapagos archipelago)[24]则出现了暴雨。因此,小冰期对世界各地产生了截然不同的气候影响。

6. 重要的信息(Messages to remember)

  • 环境的适应往往是定居的关键。当环境有利时,这种适应就更容易。
  • 古往今来,许多大城市的发展都与自然资源,特别是淡水的可利用性和管理密切相关。对于热带地区来说,这种可利用性是最大降水区(ITCZ)季节性平衡的结果,它为这些地区提供了年复一年的水源。
  • 气候记录表明,这种平衡的程度会随时间的推移而变化,并产生重大的水文影响。当时人们可以利用水利工程技术修建水库、调整池或灌溉渠等水利设施。这些设施已在帕伦克、蒂卡尔等玛雅城市和高棉城市吴哥被证明能够有效应对短期或中度气候灾害。
  • 但当气候变化十分剧烈时,这些巧妙的应对(水利工程措施)是不够的。因此,大多数人移居到其他有利于他们发展的地方。
  • 预计下个世纪的气候变化在全球范围内并不会是均质的。每一个地区都或多或少地会出现温度或水平衡的显著变化,以及海平面上升对沿海地区和三角洲的影响。这些地区的人们将有三种可能的选择:适应、迁移或消失。

  对发达国家而言,一些农业适应措施已经在设想或正在实施中,例如培植新的葡萄品种来适应葡萄酒种植区(的气候变化);但另一方面,这些适应的成本可能不会由所有人(公平地)承担。此外,可能还会涌现出其它一些明智的储备政策。过去的人们制定了属于他们的适应战略,这些战略有的成功了,有的注定失败。如果某种弹性(resilience)措施可以在区域尺度乃至国家尺度内实现,那么在全球范围又将如何呢?

 


参考资料及说明

封面照片:位于墨西哥尤卡坦州奇琴伊察的玛雅考古遗址中,玛雅文明鼎盛时期的库库尔坎(Kukulkán)金字塔,也被称为El Castillo [来源:© B. Malaizé, 2010]

[1] BOQUEHO V. Les civilisations à l’épreuve du climat, Dunod, “Quai des sciences”, 2012, 192 p.

[2] Wanner H., Beer J., Bütikofer J., Crowley T.J., Cubasch U., Flückiger J., Goosse H., Grosjean M., Joos F., Kaplan J. O., Küttel M., Müller S. A., Prentice I. C., Solomina O., Stocker T. F., Tarasov P., Wagner M. and Widmann (2008), Mid-to Late Holocene climate change: an overview, Quaternary Science Reviews, 27(19-20), 1791-1828. doi:10.1016/j.quasi-cirev.2008.06.013.

[3] Lechleitner F.A., Breitenbach S. F.M., Rehfeld K., Ridley H. R., Asmerom Y., Prufer K.M., Marwan N., Goswami B., Kennett D.J., Aquino V.V., Polyak V., Haug G.H, Eglinton T. and Baldini J. U.L. (2017) Tropical rainfall over the last two millennia: evidence for a low-latitude hydrologic seesaw, Nature Comm., doi:10.103B/srep45809.

[4] Schurer A. P., Tett S.B.F., Hegerl G.C. (2014). Small influence of solar variability on climate over the past millennium. Nature Geosciences, 7: 104-108.doi:10.1038/ngeo2040.

[5] Cullen H.M., deMenocal P.B., Hemming S., Hemming G., Brown F.H., Guilderson T. and Sirocko F. (2000), Geology, vol 28, n4, 379-382.

[6] Weiss H., Courty M-A., Wetterstrom W., Guichard F., Senior L., Meadow R. and Curnow A. (1993), vol 261, pp 995-1004, doi: 10.1126/science.261.5124.995.

[7] deMenocal P. B. (2001), Cultural responses to climate change during the Late Holocene, Science, 292, 667, doi: 10.116/science.1059827.

[8] Railsback L. B., Liang F., Brook G. A., Voarintsoa N. R. G., Sletten H. R., Marais E., Hardt B., Cheng H. and Edwards R. L. (2018), The timing, two-pluse nature, and variable climatic expression of the 4.2 ka event : A review and new high resolution stalagmite data from Namibia, Quat. Sci. Rev., 186, 78-90.

[9] Event recently ratified by the International Commission on Stratigraphy (ISQS, 2018).

[10] Curtis J.H., Hodell D. A. and Brenner M. (1996), Climate variability on the Yucatan peninsula (Mexico) during the past 3500 years, and implications for Maya Cultural evolution, Quat. Res, 46, 37-47.

[11] Martin S. and Gruβe N., Chronicle of the Maya kings and Queens, Thames and Hudson, 2005, 240p.

[12] Curtis J.H., Hodell D. A. and Brenner M. (1996), Climate variability on the Yucatan peninsula (Mexico) during the past 3500 years, and implications for Maya Cultural evolution, Quat. Res, 46, 37-47.

[13] Hodell D. A., Brenner M., Curtis J. H., Medina-Gonzalez, Ildefonso-Chan Can E., Albomaz-Pat A. and Guilderson T. (2005), Climate change on the Yucatan peninsula during the Little Ice Age, Quat Res., 63, 109-121. Doi:10.1016/J.yqres.2004.11.004.

[14] Rosenmeier M. F., Hodell D. A., Brenner M. and Curtis J. H. (2002), A 4000 year lacustrine record of environmental change in the Southern Maya Lowlands, Peten, Guatemala, Quat. Res. 57, 183-190. doi:10.1006/qres.2001.2305.

[15] Fleury S., B. Malaizé, J. Giraudeau, D. Galop, V. Bout-Roumazeilles, P. Martinez, K. Charlier, P. Carbonel and C. Arnauld (2014) “Impacts of Maya land use on Laguna Tuspan watershed (Peten, Guatemala) as seen through clay and ostracode analysis”. Jr Archaeo Sc., 49, 372-382.

[16] Haug G.H., Günther D., Peterson L.C., Sigman D.M., Hughen K. A. and Aeschlimann B. (2003), Climate and the collapse of the Maya civilization, Science, vol. 299, 1731-1735.

[17] Schurer A. P., Tett S.B.F., Hegerl G.C. (2014). Small influence of solar variability on climate over the past millennium. Nature Geosciences, 7: 104-108.doi:10.1038/ngeo2040.

[18] Lechleitner F.A., Breitenbach S. F.M., Rehfeld K., Ridley H. R., Asmerom Y., Prufer K.M., Marwan N., Goswami B., Kennett D.J., Aquino V.V., Polyak V., Haug G.H, Eglinton T. and Baldini J. U.L. (2017) Tropical rainfall over the last two millennia: evidence for a low-latitude hydrologic seesaw, Nature Comm., doi:10.103B/srep45809.

[19] Arneborg J., Heinemeier J., Lynnerup N., Nielsen H., Rud N. and Sveinbjörnsdottir A.E., (1999), Change in the diet of the Greenland vikings determined from stable carbon isotope analysis and 14C dating of their bones, Radiocarbon, Vol 41, 157-168.

[20] Zhang P., Cheng H., Edwards R. L., Chen F., Wang Y., Yang X., Liu M., Tan M., Wang X., Liu J., An C., Dai Z., Zhou J., Zhang D., Jia J., Jin L. and Johnson K. R., (2008), A test of climate, sun and culture relationship from an 1810-year Chinese cave record, Science, vol 322, 940-942, doi: 10.1126/science.1163965

[21] Day M.B., Hodell D. A., Brenner M., Chapman H.J., Curtis J. H., Kenney W. F., Kolata A. L. and Peterson L., (2011), Paleoenvironmental history of the West Baray, Angkor, Cambodia, PNAS, vol 109, 1046-1051, doi: 10.1073/pnas.1111282109.

[22] Schaefer J.M., Denton G. H., Kaplan M., Putnam A., Finkel R.C., Barrell D. J. A., Andersen B. G., Schwartz R., Mackintosh A., Chinn T and Schlüchter C., (2009), Hign frequency Holocene Glacier fluctuations in New Zealand differ from the Northern Signature, Science, vol 324, 622-625, doi:10/1126/science.1169312.

[23] Orliac M. (1986), A la recherche des anciens polynésiens, Tahiti et Moorea, in’Encyclopedie de la Polynésie, Vol 4, p82-83, ed C. Glizal/ les éditions de l’Alizé.

[24] Nelson D. B. and Sachs J. P. (2016), Galapagos hydroclimate of the common Era from paired microalgal and mangrove biomarker 2H/1H values, PNAS, vol 113 3476-3481, doi: 10.1073/pnas.1516271113.


环境百科全书由环境和能源百科全书协会出版 (www.a3e.fr),该协会与格勒诺布尔阿尔卑斯大学和格勒诺布尔INP有合同关系,并由法国科学院赞助。

引用这篇文章: MALAIZE Bruno (2024年3月13日), 气候变化与古代文明, 环境百科全书,咨询于 2024年7月27日 [在线ISSN 2555-0950]网址: https://www.encyclopedie-environnement.org/zh/climat-zh/climate-change-and-ancient-civilizations/.

环境百科全书中的文章是根据知识共享BY-NC-SA许可条款提供的,该许可授权复制的条件是:引用来源,不作商业使用,共享相同的初始条件,并且在每次重复使用或分发时复制知识共享BY-NC-SA许可声明。

Climate change and ancient civilizations

civilisation maya - pyramide kukulkan

The history of the rise and fall of great past civilizations has often been closely linked to changing climatic conditions. This link is justified by the crucial importance at these times of regular agricultural production, which is very sensitive to climatic conditions and in particular to water availability. While archaeologists allow us, through their work, to better understand the history of these civilizations, paleoclimatology allows us to reconstruct some climatic variations in the past, and, among other things, to link changes in the water balance with environmental changes that may promote or degrade people’s lives in the past. Several examples illustrate this link between the history of human settlements and the climatic events that have marked the past millennia and raise questions. How could repeated episodes of drought have pushed Sumerian and Mayan civilizations to decline? What was the impact of the Little Ice Age on some populations in Europe and Asia?

1. The emergence of the first ancient cities favoured by the climate

The great ancient cities were often at the heart of the first civilizations. Placed on a world map, most of them are located in intertropical areas (Figure 1). This geographical distribution, which does not seem to be the result of chance, reveals a hypothesis: the location of these cities is due to the need for significant agricultural production to meet the needs of their inhabitants.

Endemic agriculture has been the basis of each of these civilizations:

  • maize for pre-Columbian civilizations;
  • rice for Asian peoples;
  • wheat and barley for the first western and eastern cities.

Not only do these agricultures require a significant supply of water, but also a drier period. Tropical to subtropical climates offer the best hydrological conditions for such crops, with maximum rainfall in summer and a dry season in winter.

This maximum precipitation corresponds to the passage of the Intertropical Convergence Zone (ITCZ; Figure 1), a narrow climatic band that extends from east to west and migrates in latitude during the year (Read Jet-streams). This migration occurs between the tropics, i.e. between 20° N and 20° S, following approximately the maximum exposure. Winter is a dry season that limits the total water supply over the year and avoids flooding of crops. This alternation of highly contrasting hydrological conditions is less pronounced for temperature, although the latter could also play a decisive role on crops.

changement climat monde - climat monde - agriculture monde
Figure 1. Distribution map of civilizations’ outbreaks and meteorological zones of heavy rainfall according to seasons (ITCZ). The extension areas of the first centers of ancient civilizations are surrounded by a red line. The stars represent the privileged areas of endemic agriculture (after V. Boqueho, ref.[1]). Background map: current location of the intertropical convergence zone (ITCZ) in January (blue-coloured zone) and July (pink-coloured zone) [Source : Mats Halldin, 2006, via Wikimedia commons [Public domain]].
Vincent Boqueho in his book Les civilisations à l’épreuve du climat [1] underlines the importance of a seasonal variation in temperatures, with a period of the year below a certain threshold. According to him, low temperatures limit the development of several diseases of microbial origin, carried by parasites and promoted by high temperatures. The combination of these requirements – high water supply, alternating wet and dry conditions, colder periods – considerably reduces the geographical areas favourable to optimal crop yield. On a more regional scale, the altitude favours cooler temperatures. Figure 1, resulting from Boqueho’s work, presents on the one hand the endemic agricultures that benefited from ideal climatic conditions, as well as the regions of emergence of the first great civilizations: the superposition of their distribution is striking.

Only Mediterranean civilizations have developed in a much wider area, beyond the “fertile crescent”. Eastern peoples probably migrated from the Middle East following the upheavals of the first Mesopotamian civilizations; it was only after a first settlement in the north of the Arabian Peninsula that these peoples moved to an area particularly favourable to economic exchanges through navigation: the Mediterranean basin.

The location of the major centers of civilization, whether eastern, western, Asian or Amerindian, was, at least in part, determined by the favourable climatic conditions of these tropical latitudes. These conditions are also more locally found in Mediterranean and mountain climates, in particular. However, these climatic conditions have fluctuated on a regional scale, in particular in relation to the seasonal dynamics of the ITCZ. Paleoclimatic reconstructions allow us to specify these variations in different regions of the globe. Can we relate these variations to those of human populations? We will try here to show how a natural evolution of the climate has contributed to the establishment, growth, decline, or migration of human populations, with examples from different periods and continents.

2. Migration of climate zones over the last few millennia

The establishment and development of the civilizations in question took place several millennia ago; around 5,000 to 4,000 BC for the first Asian (first intensive rice cultivation) and Eastern (Mesopotamia) outbreaks, and 3,000 to 2,000 BC for the first Mesoamerican civilizations. These settlements therefore took place between 7,000 and 4,000 years ago BP, i.e. compared to today[2].

Technically, the dates indicated in this text refer to the Gregorian calendar, which uses as a reference the year ‘zero’, and the notations ‘before Christ’ (B.C.) and ‘Anno Domini’ (A.D.) for the years before and after the year zero respectively. These years can also be expressed in age, defined in relation to a current reference: the B.P. (‘Before Present’) rating uses the year 1950 AD as a reference, and the B2K (‘Before Year 2000’) rating the year 2000 AD. Thus, the year 4000 BC corresponds to ages of 5,950 years BP.

How can we reconstruct climatic variations over such past periods, and what do these reconstructions teach us? The scientists who reconstruct past climates from natural archives are paleoclimatologists. In tropical areas, these experts have highlighted migrations from the famous Intertropical Convergence Zone (ITCZ) over the last few millennia at different time scales. Thus, a general southward migration of the ITCZ has first been suggested over the past 6,000 years, ref. [2].

More recently, shorter-scale migrations (up to decades) have been specified, particularly during the so-called Early Ice Age period [3]. These climate changes are attributed to several factors, such as variations in sunstroke, and some large volcanic eruptions, amplified by feedback mechanisms between oceanic and atmospheric circulations [4]. This turning point, since 6,000 years B.P., corresponds more or less to the emergence of the first major centers of civilization in the regions exposed in the introduction, where men have found ideal climatic conditions for their development. In natural archives (such as lake or marine sediments, or cave stalagmites), records of the water balance indicate significant changes that must have affected the agricultural resources that ensure human survival. What evidence shows that these civilizations have been affected by these climate variations?

3. The Sumerian civilization

carte proche orient - climat proche orient
Figure 2. (a) Map of current rainfall distribution in the Near East, and location of some ancient cities. (b) Left: variations in the dolomite content of sediments in the M5-422 marine core from the Gulf of Oman. The presence of this mineral attests to a dry period (grey band) on the continent. Right: chronology of the Akkadian Empire deduced from the excavation results of the city of Tell Leilan (Syria). [Source: Left, adapted from Geyer and Sauvage, background map Виктор В [CC BY-SA 2.0 (https://creativecommons.org/licenses/by-sa/2.0)]; Right, adapted from Cullen et al., 2000, ref. 5]
A first example is provided by the Sumerian civilization, which flourished in Mesopotamia, between the banks of the region’s two rivers, the Tigris and the Euphrates (Figure 2a). People occupied this region as early as the 7th millennium BC, long before the Sumerians flourished around 3500 BC. This civilization brings significant progress, such as the invention of the wheel, the cuneiform writing, and develops monumental cities like Uruk (Figure 2a).

In order to feed the inhabitants of its cities, the State must ensure significant agricultural production: it relies on writing, which allows better management of resources such as crops, places, plants and animals’ accounting), but also on river exploitation, which guarantees the necessary water supply. These large rivers are fed by the Transcaucasian mountain range in the northern part of the Fertile Crescent, east of Anatolia (Figure 2a). Currently, these mountains receive between 0.6 and 1m of precipitation per year, which is sufficient to create large rivers (Figure 2a) [5]. Such climatic conditions, if they were identical more than 5,500 years ago, must have contributed to the proper development of agriculture, and therefore to the development of Sumerian civilization.

This civilization was at a turning point around 2,334 BC, with the influence of a new ruler, King Sargon, who brought together the various cities under the hegemony of a new capital, Akkad, to found the Akkadian empire. However, it seems that a major setback struck this empire a century after its emergence, that is, about 4,100 years ago. The term collapse of the Akkadian empire is often used to describe the loss of political influence of these large cities throughout the region, also corresponding to major armed conflicts and the exile of a significant part of the urban population. As often, it is not a real collapse since traces of occupation are still found in the region 300 years later.

What do the climate archives tell us about this period? Geological records show significant dust deposits, on the one hand in the area of the city of Tell Leilan in present-day Syria [6], and on the other hand in marine sediments in the Gulf of Oman, ref[5]. Marine deposits are dated at approximately 4,025 years B.P. with an uncertainty of 125 years (Figure 2b). These deposits indicate a rapid shift to much drier climatic conditions. Some writings report much more difficult agricultural conditions at that time, suggesting that significant climate change has had a drastic impact on agriculture, and consequently on the cohesion of the Akkadian empire. From a climatic point of view, the aridification of Mesopotamia would be linked to the cooling of surface waters in the North Atlantic, as such an atmospheric link has been demonstrated for the current climate. Paleoclimatic records show a drop in temperatures in the North Atlantic Ocean of about 1 to 2°C 4,100 years ago B.P. [7].

The climate cause is certainly not the only one to explain the fall of the Akkadian empire. Nevertheless, these significant climate changes have inevitably had impacts on agriculture and caused difficulties in meeting the needs of the population. These difficulties have undoubtedly contributed to conflicts between cities and a destabilization of political power.

This climatic event seems to have affected the entire tropical zone, probably in two phases, one around 4,200 years old and the other around 3,900 years B.P. [8], causing drought events in some geographical areas and heavy rainfall events in other regions. The magnitude of this climatic event is such that it is now used as a stratigraphic reference point for the definition of the most recent Holocene period sub-story, under the name of Meghalayan [9]

4. The Mayan civilization

peninsule yucatan - climat yucatan
Figure 3. (a) Current rainfall distribution map over the Yucatán peninsula, largely in Mexico, at latitudes of about 15-20º N, and location of some ancient sites. (b) Isotopic composition of Ostracod shells from Lake Punta Laguna in Yucatán: positive values correspond to drought episodes highlighted by the grey bands. Right: chronology of cultural periods of the Mayan settlement in the Yucatán peninsula. [Source: On the left, adapted from Lachniet et al. 2013, background map by Addicted04; On the right, adapted from Curtis et al. 1996[10])
The American continent has hosted many great civilizations that have relayed over time, with very different geographical occupations. The Mayan civilization colonized much of southern Mexico, the entire Yucatán Peninsula (Figure 3a). Historians identify three phases in the evolution of this civilization (Figure 3b):

  • A preclassical period, which extends from 2000 BC to 250 AD;
  • A classic period, during which this civilization reached its peak, between 250 and 900 AD;
  • and finally a post-classical period, where large cities have declined and emptied themselves of their inhabitants, and where small communities have regrouped in scattered villages. This weakening leaves the field open for the arrival of new peoples from the north, such as the Toltecs, who are bringing new cities to the north of the peninsula.

During the pre-Classical period, the Mayans settled in small villages and began to modify their environment, clearing the jungle in order to establish the first crops, especially corn. This development is, as for the Sumerian and Akkadian civilizations, supported by a precise writing system and calendar, making it possible to manage agricultural holdings as well as possible.

The establishment of a powerful political and religious power, centralized around a “king-divine”, sees the emergence of several city-states, such as Tikal (Figure 4), Calakmul or Palenque, which will try to extend their perimeter of domination over different areas of the peninsula (Figure 3a). A subtle interplay of wars and alliances then began between these cities, leading to the construction of ever more monumental temples and pyramids, around which more and more inhabitants came to find protection [11]. This increase in urban density leads to increased exploitation of crop areas. It seems obvious that accelerated deforestation occurred during the classical period.

maya - guatemala - tikal
Figure 4. Mayan site of Tikal (Guatemala), during the celebration of the solstice. [Source: Bjørn Christian Tørrissen[CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)]
This deforestation has exposed the geological substrate of the peninsula: it is a karst limestone plateau, very permeable to rainwater, except where soil formed by a large plant cover retains rainwater. In addition, the amount of precipitation over this region of Central America depends directly on the geographical position of the intertropical convergence zone (ITCZ) presented in the introduction. Only the seasonal swaying of this ITCZ provides rainfall during the summer season (rainy season), and a water deficit during the winter season (dry season) (see Figures 1 and 3). For Mayan agriculture, the return of the rainy season each year, combined with the presence of substantial soil, guaranteed a water reserve necessary for the maximum exploitation of agricultural land.

cenote - peninsule yucatan - yucatan
Figure 5. A cenote, a natural water reservoir in the Yucatan Peninsula “Cenote de los Sacrificios” in Chichén Itzá, Mexico. [Source: Ekehnel (Emil Kehnel) [CC BY 3.0 (https://creativecommons.org/licenses/by/3.0)]
To reconstruct the evolution of this water balance, lake sedimentary archives have been collected at numerous sites in the northern part of the Yucatán peninsula [12],[13] and in the centre [14],[15], as well as some marine sedimentary archives from northern Venezuela [16]. These records reveal several periods of droughts that have lasted from several years to decades, well identified and dated between 800 and 900 AD (Figure 3b). These climatic events are explained by a southward migration of the ITCZ, which prevented the return of summer rains to the north and the irrigation of Mayan lands. These hydrological deficits have probably affected crop yields, despite an extremely well developed system of water retention at the surface, through engineering work, and in natural reservoirs called cenotes (Figure 5). Indeed, it was at the same time that historians noticed an increase in political tensions between the various “city-states”, and a massive exodus of urban populations. The disappearance of the hegemony of the great cities in the central territory of Yucatán marks the end of the classical period, often referred to as the “collapse” of Mayan civilization. Once again, this term “collapse” is undoubtedly abusive, since the Mayan people and culture have remained, either integrated into a new culture, as in the north of the peninsula, or by surviving in small isolated communities.

In a context very different from the previous example, and if climate variations are certainly not the only causes of the destabilization of a civilization, the temporal conjunction of the two events (climate change and cultural upheavals) has probably accelerated the process of radical changes in the functioning of a human society, calling into question its sustainability.

5. Impacts of the Little Ice Age

la tamise londres
Figure 6. The Frozen Thames, London (1677) by Abraham Hondius, London Museum [public domain]. This image is emblematic of the Little Ice Age in 17th century England.
Other civilizations on other continents have also suffered significant setbacks, such as a loss of political power, ongoing armed conflicts and a flight of part of their population to other regions. The review of environmental records has identified major contemporary climate changes in response to these setbacks. We can mention the Vikings settlement in Greenland, or the Khmer civilization in Cambodia, with one of their flagship cities hosting the majestic temples of Angkor: in both cases these peoples brutally abandoned these places around the 13th century. In both cases, the economic problems encountered, at the source of political instability or simply survival, could also be explained by significant environmental changes linked to climate change during the so-called “Little Ice Age” period.

The Little Ice Age (Figure 6) is a period that extends approximately from the 14th to the 19th century, during which the lower activity of the sun, but also the occurrence of strong volcanic eruptions, has affected the global climate in a sustainable way, including through cooling [17]. This decline in solar activity, in successive waves in the 14th, 15th, 17th and 18th centuries, to which volcanic eruptions were added, caused a significant drop in temperatures in the North Atlantic Ocean, but also modified the general atmospheric circulation, with a southward migration of the ITCZ described by several climate archives [18].

5.1. Cooler conditions in Greenland

Figure 7. Ruins of Viking installations in Brattahlid (Greenland). [Source: Gordontour via Flickr (CC BY-NC-ND 2.0)]
Viking populations settled in Greenland during the so-called medieval Optimum period, around the year 1000, with favourable climatic conditions, following political events on their original territory (Eric the Red’s exile). These favourable conditions had allowed the establishment of villages, with sheep and cattle farms (Figure 7).

During the Lesser Ice Age, a progressive advance of glaciers, associated with a drop in atmospheric and ocean temperatures, has been documented in environmental records, including ice sheets and marine sediments off Iceland and Greenland. These changes have forced the Vikings into the dilemma of either adapting, by changing their lifestyles and diets, or setting out on the open sea to find more lenient living conditions. After trying the first option by turning to an economy based on fishing and marine resources [19], they definitively fled these lands that had become hostile to return to Scandinavia or colonize the northern coasts of the American continent. The last Viking burials found on Greenland land are dated around 1430 A.D., ref [18].

5.2. Dryer conditions in Southeast Asia

In a completely different context, in the countries of South-East Asia, the Khmer civilization has spread over Cambodian territory and has built a first-rate architectural complex on the Angkor site. The first buildings date back to the 9th century, and the expansion of the site accelerated with the construction of Angkor Wat (Figure 8) and Angkor Thom in the 12th century, thanks to climate stability. The regular alternation of dry and wet seasons allowed sufficient rainfall to be provided, if stored, to feed crops and feed the ever-growing population. As can be observed for other civilizations (see the Mayas in Part 4), the hydraulic engineering work developed at that time is remarkable: several retention basins of more than 50 km2 were associated with a network of canals and dikes extending over several hundred kilometres.

At its peak, the Khmer empire spread over a large part of the countries of Southeast Asia until the 14th century. Around the 15th century, historians pointed to a drastic reduction in this power, until the Angkor temples were abandoned. This period of decline corresponds approximately to the Early Ice Age period.

temple angkor
Figure 8. Aerial view of the Angkor Wat temple complex surrounded by basins. [Source: Steve Jurvetson from Menlo Park, USA [CC BY 2.0]
In Southeast Asian countries, climate change has occurred through the monsoon regime, due to the southward migration of the ITCZ. In particular, the chemical study of several stalagmites in China, or the detailed study of a sedimentary sequence from one of the Angkor retention basins, showed a significant drop in the amount of precipitation in the 13th, 16th and 17th centuries [20],[21]. This succession of major droughts, sometimes interspersed with very heavy rainfall, could have severely damaged the hydraulic network, built on soft ground and therefore very sensitive to these hydrological changes. The major consequences on agricultural production and food supply may have led to a massive exodus from the Angkor urban area and the fall of the political and religious power in place. The concomitance of these climate changes and the evolution of the Khmer empire is in any case remarkable.

It can be seen that climate changes in the Early Ice Age have had different expressions depending on the geographical areas: lower temperatures in countries around the North Atlantic Ocean, lower precipitation in countries in South-East Asia. In the Pacific, a marked advance of glaciers in the valleys of New Zealand [22], heavy rainfall on the island of Tahiti [23] and on the Galapagos archipelago [24] have been reported. The Little Ice Age has therefore had contrasting climatic impacts in different parts of the world.

6. Messages to remember

  • Adaptation to the environment has often been the key to sedentarization. This adaptation is all the easier when the environment is favourable.
  • The development of several large cities through the ages, ancient or more recent, is closely linked to the availability and management of natural resources, and in particular fresh water. For tropical regions, this availability results from the seasonal balancing of the maximum precipitation zone (ITCZ), which supplies these regions with water stored from one year to the next.
  • Climate records show that the extent of this balancing has varied over time, with significant hydrological impacts. The hydraulic engineering of the peoples has made it possible to build reservoirs, retention basins or irrigation canals: these installations have proved extremely effective in dealing with short or moderate climatic hazards, as has been shown for the Mayan cities of Palenque, Tikal, and the Khmer city of Angkor.
  • When climate change has proved too great, these ingenious adaptations have not been sufficient. Most people then migrated to find new conditions elsewhere that were favourable to their development.
  • The climate changes expected over the next century will not be homogeneous across the globe. Each region can expect more or less significant changes in temperature or water balance, as well as impacts related to rising sea levels on coastal regions and deltas. People will then have several possibilities: adaptation, migration or disappearance.

For developed countries, some agricultural adaptations are already underway or at least under consideration, for example the adaptation of grape varieties to wine-growing regions. On the other hand, the costs of these adaptations may not be borne by all. Other sensible savings policies could then emerge. The peoples who preceded us have put in place adaptation strategies, sometimes successful, sometimes doomed to failure. If a certain resilience can undoubtedly be achieved on a regional or even national scale, what about the global level?


Notes and references

Cover image. Illustration of the Mayan civilization at the height of its splendour. Pyramid of Kukulkán, also known as El Castillo, Mayan archaeological site of Chichén Itzá, Yucatan, Mexico. [Source: © B. Malaizé, 2010]

[1] BOQUEHO V. Les civilisations à l’épreuve du climat, Dunod, “Quai des sciences”, 2012, 192 p.

[2] Wanner H., Beer J., Bütikofer J., Crowley T.J., Cubasch U., Flückiger J., Goosse H., Grosjean M., Joos F., Kaplan J. O., Küttel M., Müller S. A., Prentice I. C., Solomina O., Stocker T. F., Tarasov P., Wagner M. and Widmann (2008), Mid-to Late Holocene climate change: an overview, Quaternary Science Reviews, 27(19-20), 1791-1828. doi:10.1016/j.quasi-cirev.2008.06.013.

[3] Lechleitner F.A., Breitenbach S. F.M., Rehfeld K., Ridley H. R., Asmerom Y., Prufer K.M., Marwan N., Goswami B., Kennett D.J., Aquino V.V., Polyak V., Haug G.H, Eglinton T. and Baldini J. U.L. (2017) Tropical rainfall over the last two millennia: evidence for a low-latitude hydrologic seesaw, Nature Comm., doi:10.103B/srep45809.

[4] Schurer A. P., Tett S.B.F., Hegerl G.C. (2014). Small influence of solar variability on climate over the past millennium. Nature Geosciences, 7: 104-108.doi:10.1038/ngeo2040.

[5] Cullen H.M., deMenocal P.B., Hemming S., Hemming G., Brown F.H., Guilderson T. and Sirocko F. (2000), Geology, vol 28, n4, 379-382.

[6] Weiss H., Courty M-A., Wetterstrom W., Guichard F., Senior L., Meadow R. and Curnow A. (1993), vol 261, pp 995-1004, doi: 10.1126/science.261.5124.995.

[7] deMenocal P. B. (2001), Cultural responses to climate change during the Late Holocene, Science, 292, 667, doi: 10.116/science.1059827.

[8] Railsback L. B., Liang F., Brook G. A., Voarintsoa N. R. G., Sletten H. R., Marais E., Hardt B., Cheng H. and Edwards R. L. (2018), The timing, two-pluse nature, and variable climatic expression of the 4.2 ka event : A review and new high resolution stalagmite data from Namibia, Quat. Sci. Rev., 186, 78-90.

[9] Event recently ratified by the International Commission on Stratigraphy (ISQS, 2018).

[10] Curtis J.H., Hodell D. A. and Brenner M. (1996), Climate variability on the Yucatan peninsula (Mexico) during the past 3500 years, and implications for Maya Cultural evolution, Quat. Res, 46, 37-47.

[11] Martin S. and Gruβe N., Chronicle of the Maya kings and Queens, Thames and Hudson, 2005, 240p.

[12] Curtis J.H., Hodell D. A. and Brenner M. (1996), Climate variability on the Yucatan peninsula (Mexico) during the past 3500 years, and implications for Maya Cultural evolution, Quat. Res, 46, 37-47.

[13] Hodell D. A., Brenner M., Curtis J. H., Medina-Gonzalez, Ildefonso-Chan Can E., Albomaz-Pat A. and Guilderson T. (2005), Climate change on the Yucatan peninsula during the Little Ice Age, Quat Res., 63, 109-121. Doi:10.1016/J.yqres.2004.11.004.

[14] Rosenmeier M. F., Hodell D. A., Brenner M. and Curtis J. H. (2002), A 4000 year lacustrine record of environmental change in the Southern Maya Lowlands, Peten, Guatemala, Quat. Res. 57, 183-190. doi:10.1006/qres.2001.2305.

[15] Fleury S., B. Malaizé, J. Giraudeau, D. Galop, V. Bout-Roumazeilles, P. Martinez, K. Charlier, P. Carbonel and C. Arnauld (2014) “Impacts of Maya land use on Laguna Tuspan watershed (Peten, Guatemala) as seen through clay and ostracode analysis”. Jr Archaeo Sc., 49, 372-382.

[16] Haug G.H., Günther D., Peterson L.C., Sigman D.M., Hughen K. A. and Aeschlimann B. (2003), Climate and the collapse of the Maya civilization, Science, vol. 299, 1731-1735.

[17] Schurer A. P., Tett S.B.F., Hegerl G.C. (2014). Small influence of solar variability on climate over the past millennium. Nature Geosciences, 7: 104-108.doi:10.1038/ngeo2040.

[18] Lechleitner F.A., Breitenbach S. F.M., Rehfeld K., Ridley H. R., Asmerom Y., Prufer K.M., Marwan N., Goswami B., Kennett D.J., Aquino V.V., Polyak V., Haug G.H, Eglinton T. and Baldini J. U.L. (2017) Tropical rainfall over the last two millennia: evidence for a low-latitude hydrologic seesaw, Nature Comm., doi:10.103B/srep45809.

[19] Arneborg J., Heinemeier J., Lynnerup N., Nielsen H., Rud N. and Sveinbjörnsdottir A.E., (1999), Change in the diet of the Greenland vikings determined from stable carbon isotope analysis and 14C dating of their bones, Radiocarbon, Vol 41, 157-168.

[20] Zhang P., Cheng H., Edwards R. L., Chen F., Wang Y., Yang X., Liu M., Tan M., Wang X., Liu J., An C., Dai Z., Zhou J., Zhang D., Jia J., Jin L. and Johnson K. R., (2008), A test of climate, sun and culture relationship from an 1810-year Chinese cave record, Science, vol 322, 940-942, doi: 10.1126/science.1163965

[21] Day M.B., Hodell D. A., Brenner M., Chapman H.J., Curtis J. H., Kenney W. F., Kolata A. L. and Peterson L., (2011), Paleoenvironmental history of the West Baray, Angkor, Cambodia, PNAS, vol 109, 1046-1051, doi: 10.1073/pnas.1111282109.

[22] Schaefer J.M., Denton G. H., Kaplan M., Putnam A., Finkel R.C., Barrell D. J. A., Andersen B. G., Schwartz R., Mackintosh A., Chinn T and Schlüchter C., (2009), Hign frequency Holocene Glacier fluctuations in New Zealand differ from the Northern Signature, Science, vol 324, 622-625, doi:10/1126/science.1169312.

[23] Orliac M. (1986), A la recherche des anciens polynésiens, Tahiti et Moorea, in’Encyclopedie de la Polynésie, Vol 4, p82-83, ed C. Glizal/ les éditions de l’Alizé.

[24] Nelson D. B. and Sachs J. P. (2016), Galapagos hydroclimate of the common Era from paired microalgal and mangrove biomarker 2H/1H values, PNAS, vol 113 3476-3481, doi: 10.1073/pnas.1516271113.


环境百科全书由环境和能源百科全书协会出版 (www.a3e.fr),该协会与格勒诺布尔阿尔卑斯大学和格勒诺布尔INP有合同关系,并由法国科学院赞助。

引用这篇文章: MALAIZE Bruno (2020年1月6日), Climate change and ancient civilizations, 环境百科全书,咨询于 2024年7月27日 [在线ISSN 2555-0950]网址: https://www.encyclopedie-environnement.org/en/climate/climate-change-and-ancient-civilizations/.

环境百科全书中的文章是根据知识共享BY-NC-SA许可条款提供的,该许可授权复制的条件是:引用来源,不作商业使用,共享相同的初始条件,并且在每次重复使用或分发时复制知识共享BY-NC-SA许可声明。