从温室效应的发现到IPCC

  温室效应的原理是在什么时候怎么出现的?瑞典科学家何时、又如何发现地球平均温度对大气CO2浓度倍增十分敏感?对人类活动影响的缓慢认知是如何随时间变化?IPCC[1]的目的是什么?这些问题都是本报告的起源问题。

1. 气候一直影响着人类社会

环境百科全书-IPCC-红发埃里克在船上
图1. 红发埃里克在他的船上“公元1000年前后格陵兰海岸附近的夏天”,作者卡尔·拉斯穆森(1841-1893)。[公开领域]

  气候一直是人类社会进化的一个重要因素。几千年前,苏美尔和玛雅文明的出现和繁荣,以及它们的第一批古城,往往与支撑可持续农业生产的气候条件相关。它们的命运和衰退往往与几千年来气候区的迁移协同进行(参见:“气候变化与古代文明”)。

  离我们最近的小冰期,大约从14世纪持续到19世纪,影响了许多社会部落,如公元1000年前后红发埃里克在格陵兰岛建立的维京部落(图1),或是柬埔寨的高棉文明及其宏伟的吴哥窟建筑。小冰期来临后,格陵兰岛变冷,东南亚地区变干,这些环境条件的变化很可能是这些地区人口减少和离开的原因(参见:“气候变化与古代文明”)。

  过去的这些变化说明了人类部落的历史和过去几千年来气候条件演变之间的联系,但并不能质疑人类活动对气候变化的决定作用。但是,这些变化提供了信息,证明人类有能力适应环境变化。

  相比之下,如果不考虑人类社会对气候的影响,就无法讲述下面从19世纪开始的故事。这个故事的特点是出现了科学技术发现,以及对科学界、决策者(包括但不限于政治家)和民间社会的缓慢认识。这个故事和这种人类活动影响环境的意识导致了今天我们21世纪社会面临的主要挑战之一。

  我将从以下的历史里程碑来展开这个故事:

  • 19世纪初:约瑟夫·傅里叶发现了温室效应;
  • 19世纪末:斯凡特·阿伦尼乌斯首次计算了大气中的二氧化碳(CO2)与地球表面温度之间的关系;
  • 1958年:查理斯·基林在冒纳罗亚观测站[2]正式开启首次对大气中二氧化碳(CO2)浓度的监测,监测数据将为人类活动对大气成分的影响提供一份永久的证明;
  • 1979年:《查尼报告》在美国发表,这是科学家们向政界提交的第一份官方文件;
  • 1988年:IPCC诞生。

2. 温室效应的发现

环境百科全书-IPCC-约瑟夫·傅里叶
图2. 约瑟夫·傅里叶
[图片来源:Amédée Félix Barthélemy Geille/公开领域]

  19世纪,科学家意识到大气层可能会影响地球的温度。伟大的法国物理学家约瑟夫·傅里叶[3](1768-1830)(图2)在其1827年出版的论文《地球温度和平面空间温度备忘录》[4]中第一次证明了温室效应理论的存在。

  他解释说,能量以太阳可见光的形式存在,可以很容易地穿透大气层,并加热地球表面,而地球表面又吸收了一部分太阳辐射。地球表面通过这种方式获得能量,并通过发射“暗辐射热”的方式释放能量(在约瑟夫·傅里叶的法文原文中“暗辐射热”被称为“chaleur rayonnante obscure”),现在,科学家称其为红外辐射。大气层反过来吸收这些暗热,并将部分暗热反射到地表,从而减少流失到太空中的能量。

  基于约瑟夫·傅里叶的工作,后续多人发表了关于大气层中的气体吸收暗辐射热及其对气候的潜在影响的文章。物理学家们很快就对地球表面的平均温度产生了兴趣:地表平均温度受大气中这些吸热气体影响吗[5]?很明显,如果大气中没有这些气体,我们星球表面的温度会低得多,可能会使生命无法存在。

  在傅里叶发现温室效应后不久,爱尔兰人约翰·丁达尔 (1820-1893)通过自学研究了空气是否能够吸收地球表面发出的暗辐射热。

  但斯凡特·阿伦尼乌斯在1896年首次计算了大气中二氧化碳含量的变化对地表温度的影响。

环境百科全书-IPCC-斯凡特·阿伦尼乌斯
图3. 斯凡特·阿伦尼乌斯(1859-1927)
[图片来源:Meisenbach Riffarth & Co公司照相制版/公开领域]

  斯凡特·阿伦尼乌斯 (1859-1927)是一位瑞典化学家,因在电化学方面的工作在1903年获得了诺贝尔化学奖。然而,20世纪末以来,随着对全球变暖的了解,人们开始对他在温室效应方面的开创性工作产生兴趣。

  19世纪科学界就为什么在遥远的过去,地球表面经历了冰河时期(现在被称为冰川作用)展开了一场大辩论。各种理论层出不穷——天文学假说、物理学假说、地理学假说。阿伦尼乌斯对这个问题很着迷,他的直觉认为,大气中的二氧化碳可能是导致冰期循环的关键因素。首先,他需要收集当时已知的所有现存的必要数据,以估算大气中的CO2含量对地球温度的影响。1896年,经过一些他自称特别“繁琐的计算”(根据他自己的记载[6])后,他首次提出了大气中CO2含量对地球温度影响的估算结果。计算结果表明,如果大气中CO2的含量减少一半左右,可能会导致欧洲的平均气温下降约4-5℃,与冰河时期的情况相近[7]

  这种CO2在调节地球温度方面起重要作用的理论是对詹姆斯·克罗尔(1821-1890)所支持的天文假说的一种替代。这一假说提出这样一个观点:地质尺度的气候变化是由赤道的前移和地球轨道的变化造成的[8]

  气候的天文理论早已被驳斥。但随着对海洋记录的观察促进了理论的发展和精确性,并成为冰期循环研究的范例,例如,建立了冰期循环的年代表,而非振幅(参见:“气候的天文理论:悠久的历史”,作者Berger和Yin,不久将在本百科全书网站发表)。

环境百科全书-IPCC-南极冰盖中的空气气泡
图4. 南极冰盖中的空气气泡(欧洲南极冰芯计划(EPICA)钻取)
[图片来源:© Photo E. Wolff/BAS/EPICA

  80年后,阿伦尼乌斯的预测通过解密冰期档案得到了证实。例如,格勒诺布尔的冰川学家测量了南极冰中形成于末次冰期的空气气泡中CO2的浓度,并将结果发表在英国《自然》杂志中,文章指出,“极地冰层的证据表明,公元前20,000年大气中的二氧化碳浓度是现在的50%[9]”。

  如今可以看到,冰期循环现象可以用阿伦尼乌斯和克罗尔最初的观点综合来解释,这一现象是天文和温室气体变化的综合效应,并被一系列的自然反馈所放大。

  阿伦尼乌斯还计算出,在大气中二氧化碳加倍的情况下,未来全球将变暖约5-6℃,这一预测接近目前估计范围的最大值(1.5-4.5℃)。目前普遍认为全球变暖将是人类面临的重大风险,但阿伦尼乌斯的观点却与之相反。他在一本书中与公众分享了对宇宙演变的看法,并预测大气二氧化碳浓度的增加带来的地球变暖将是人类的一次机遇。他特别指出,世界上的寒冷地区可以利用气候条件的改善和农业产量的提高来造福快速增长的人口[10]

3. 查理斯·基林著名的冒纳罗亚曲线

环境百科全书-IPCC-大气二氧化碳历史记录
图5. 1958年以来冒纳罗亚观测站的大气二氧化碳历史记录。该记录说明了人类排放导致了二氧化碳无法阻挡的增长。为致敬其发现者,该曲线也被称为“基林曲线”。图中红色锯齿状曲线为冒纳罗亚观测站记录的逐月CO2浓度。基林(斯克里普斯海洋研究所)于1958年3月开始监测。黑色曲线表示经过季节周期校正后的增长趋势(见下文)。
[来源:©Esrl.noaa.gouv]

  阿伦尼乌斯的开创性工作发表之后,人们开始质疑其计算的准确性,或质疑二氧化碳排放量增加是否会影响气候。一些人认为我们的地球具有极强的自我调节能力,例如,有观点认为海洋可以吸收大气中所有过量的二氧化碳。尽管如此,温室效应理论仍有其支持者,并且逐渐受到关注。

  20世纪50年代,对大气二氧化碳浓度的部分和局部监测已经进行了几十年。然而,自工业时代开始以来,并没有监测二氧化碳浓度增加的技术。当时众所周知的是,由于化石燃料的燃烧,排放到大气中的二氧化碳量(甚至早在阿伦尼乌斯时代)正在持续增加。但要想了解工业排放的二氧化碳对气候可能产生的影响,二氧化碳浓度监测数据是至关重要的信息。

  美国年轻的地球化学家查理斯·大卫·基林(1928-2005)在他的博士后期间[11]开发了第一个精确测量大气中二氧化碳浓度的技术。1958年,他在夏威夷冒纳罗亚山顶的观测站开始了一系列采样工作。观测站位于太平洋中部,海拔3400米,这个地方远离人类污染源,选择该地是因为这里空气纯净。观测的最初几年,基林曲线就呈现了完美的锯齿状和增加趋势:出现锯齿状的原因是冒纳罗亚所位于北半球,植被在春夏的生长季从大气中吸收CO2,并在秋冬将其释放。

  著名的冒纳罗亚曲线就这样诞生了,它由基林发起,并一直延用至今(图5)。它被科学期刊和科学记者广泛引用,已成为人为温室效应的一个标志。

4. 华莱士·布勒克的预测(1975年)和“全球变暖”一词

  1970年代,科学家们开始真正关注人类活动对气候的潜在影响。

  1940年到1975年,地球的平均表面温度、也被称为全球温度,先是出现了下降,到1950年左右才保持基本稳定(图6)。

  1975年,20世纪下半叶最伟大的地球化学家之一华莱士·布勒克(朋友们称其为沃利,2019年逝世)在科学界领先杂志《科学》上发表了一篇题为“气候变化:我们正处于显著全球变暖的边缘吗?”[12]的文章。在这篇文章中,他普及了“全球变暖”的表述,并解释了[13]自然变冷如何早在1940年就掩盖了化石燃料燃烧排放二氧化碳导致的变暖效应。他还预测,1975年将是长期快速变暖的开端,可能导致21世纪初(即现在!)全球气温将达到过去1000年(与格陵兰岛的冰芯记录相比)从未达到的水平。

5. 从《查尼报告》(1979)到IPCC的起源(1988)

环境百科全书-IPCC-地球平均表面温度的演化
图6. 1880年以来地球平均表面温度的演化。为什么这条全球温度曲线始于1880年?因为美国宇航局的戈达德空间研究所、美国国家海洋大气局的国家气候数据中心和英国气象局的哈德利中心这三个时间最长、最完整的温度序列都始于1880年。这些序列相互之间有很好的一致性,有助于阐明工业革命以来的全球变暖趋势。左边的温度尺度根据1951至1980年的平均温度的温度异常绘制的。在这140年的记录中,10个最热的年份都在2000年以后,其中6个最热的年份就是过去的这6年。
[来源:NASA/NOAA网站]

  1970年代的后5年,人类引起的全球变暖尚未被明确观测到(见图6);尽管如此,人为排放的CO2在大气中的积累已广为人知(冒纳罗亚曲线,图5)。当然,很难确切地知道这个问题何时出现在公共领域。

  《查尼报告》起到了决定性的作用[14],这份报告应美国政府的要求为美国国家科学院编写,并于1979年提交给卡特总统。

  这份报告调查了气候模型的模拟结果,这些气候模型可以模拟大气二氧化碳增加带来的气候变化。模型预测,大气中二氧化碳增加一倍将导致全球变暖1.5-4.5℃。40年前提出的预估值,直至今天几乎没有变化!

  于是,科学界从事气候相关工作的部分核心人员认识到这个问题的重要性,并加深了对大气中温室气体浓度增加导致气候变化的认知。1980年,世界气候研究计划(WCRP)成立[15]。随后,1988年IPCC的成立向政府和民众敲响了警钟。该机构的第一任主席是《查尼报告》作者之一的伯特·布林。

  IPCC由联合国(UN)下属的两个组织共同决定成立:联合国环境规划署(UNEP)和世界气象组织(WMO)。

6. IPCC(政府间气候变化专门委员会)

环境百科全书-IPCC
注:intergovernmental panel on climate change-政府间气候变化专门委员会;climate change synthesis report-气候变化综合报告

  2018年出版的《气象学》杂志的第100期中有IPCC30年历史的详细描述[16],包括创建背后的原因、使命、机构运作、发展挑战和历次发布的报告。

  IPCC的任务是定期回顾和综述以下三个领域的知识:

  • 从科学角度评估气候系统如何运行以及气候变化;
  • 社会、经济和自然系统对气候变化的脆弱性以及适应的可能性;
  • 寻找限制温室气体排放和减轻气候变化负面影响的解决措施。

  IPCC的评估主要基于国际上现有的同行评议的科学、技术和社会经济文献。IPCC的专家致力于确定科学界已达成共识的内容。

  IPCC为面临重大文明挑战的政治思考提供依据,它包含195个国家,几乎涵盖了世界上所有国家。它代表了一种独特的机构经验[17],是生物多样性领域的典范,无疑也将成为未来其它领域的典范。

  IPCC报告的作者涵盖该领域数百名知名专家学者,他们花费大量时间编写评估报告。其他数百名专家学者作为审稿人提供意见,也为评估报告做出了特别贡献。

  IPCC没有进行原创性研究或向决策者提出建议的任务。其报告(图7)旨在与“政策相关”、帮助决策,而非“政策规定”。因此,IPCC报告做出的综合科学判断与《联合国气候变化框架公约》年会(即缔约方大会)期间作出的政治决定之间存在着重要的协同作用[18]

  最后,公众可能会关心的IPCC的预算由会员国自愿捐款提供,总计约为600万欧元。因此,对于全球范围的人道主义事业来说,这笔费用是最物有所值的!

7. IPCC的一些关键结论

7.1. 人类活动需要对全球变暖负责吗?

  自1990年IPCC发布第一次报告以来,随着观测和模型知识的进步,答案也在不断变化:

  • 1990年,专家们承认,他们很难确定观测到的气候变化是由人类活动引起的,还是由自然气候变异造成的。
  • 1995年,IPCC第二次报告谨慎指出:“证据权衡后发现,人类对全球气候有明显的影响”。
  • 随后,IPCC在2007年得出结论,20世纪中叶以来观察到的大部分(10次中约有9次)气候变暖,有超过90%的可能性与人类活动有关。这一结论明显加强。
  • 2014年的最新一次报告中,这一结论变得更加明确。

7.2. 气候变暖的影响

  现在和将来气候变化的影响都因地区、活动类型、经济部门等因素而异。模拟结果表明,如果不采取行动应对全球变暖,与工业化前的水平相比,本世纪末全球变暖平均温度将超过4℃(现在气候变暖约1℃),并可能会出现以下后果(下文所列并不详尽):

  • 北极夏季冰层可能全部消融,珊瑚礁濒临灭绝;
  • 热浪、龙卷风、洪水等极端天气现象可能更加频繁和强烈,弱势国家和人群面临更大的风险;
  • 生物多样性风险增加;
  • 发生某些突然的、有时是不可逆转的事件,如海洋酸化、永久冻土减少(位于极地地区或高海拔山区的永久冻结土壤),海平面上升,整个格陵兰地区面临在千年内全部融化(即海平面上升7m)。

7.3. 限制气候变暖的不利影响(减缓和适应)

  为了减缓不利影响,重点显然是实现与工业化前水平相比增温2℃以下的目标,这也是《巴黎协定》第21次缔约方大会的主要目标。实现该目标需要在2050年前大幅减少全球温室气体的排放。

8. 一些个人想法

  80年代,我做了关于气候变化和全球变暖的公开讲座。人们普遍对此很感兴趣,但对大多数观众来说,这是他们第一次听到人类活动可能会影响气候并导致全球变暖。随着时间的推移,听众的知识面越来越广,批判性也越来越强,因为媒体经常强调气候怀疑论者[19]的争论。气候怀疑论者一开始否定全球变暖,但现在认识到了它确实存在。尽管如此,他们将全球变暖归因于自然气候变化,如太阳的周期性活动和火山喷发。

  批判几乎全部集中质疑IPCC,以及在其报告中发现的微不足道的错误这两方面。

  显然,这些批评深刻地影响了包括法国在内的一些国家的公众舆论,其中以克劳德·阿莱格雷为首。这些公众舆论一直在质疑我。事实上,气候怀疑论者几乎都是科学家,包括物理学家或其他领域。然而,很少有人是气候科学方面的专家。相比之下,IPCC的科学家则是相关科学和技术领域的专家。他们必须独立于任何权力或游说团体,并能够达成普遍的共识,这是一项尤其艰难的任务。

  无论如何,在2020年初,越来越多的国家领导人认识到全球变暖是我们21世纪社会面临的主要挑战之一。而且,越来越多的公众舆论希望这个问题能够作为紧急事项加以解决。IPCC很明确:尽一切努力在本世纪末将全球变暖控制在工业化前(1850-1900年)2℃以下水平。这仍然是可能的,但前提是我们必须要采取严厉的措施。如果在未来十年里什么都不做,那么将为时已晚。

  这是一个影响我们下一代生活的选择,除此之外,我们还能说些什么呢?

  这篇发表在《环境百科全书》的文章是基于将发表于《梅斯国立学院备忘录》的另一篇文章。

 


参考资料及说明

封面图片:左侧:德索绪尔先生于1787年8月前往勃朗峰的旅行途中完成,克里斯蒂安·冯·梅切尔铜版雕刻,泰勒斯博物馆藏品[来源:克里斯蒂安·冯·梅切尔/公开领域]/右侧:马修·里格勒的勃朗峰[修·里格勒,抄送]。

[1] 政府间气候变化专门委员会

[2] 夏威夷语的字面意思是“长长的山”,指位于美国夏威夷群岛的一座活的红火山。

[3] Jean-Baptiste-Joseph或者简单的Joseph Fourier。

[4] Fourier (J.-B.-J.), “Mémoire sur les températures du globe terrestre et des espaces planétaire”, Mémoires de l’Académie Royale des Sciences de l’Institut de France, vol. VII-1827, pp. 570-604.

[5] Arrhenius (S.), “On the Influence of Carbonic Acid in the Air Upon the Temperature of the Ground,” The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 1896, 41: 237-76. 法语译版: Sur les origines de l’effet de serre et du changement climatique, Montreuil, Éd. la ville brûle, 2010, p.197-243.

[6] Arrhenius’ “tedious” calculations are in the order of 10,000 to 100,000 calculations by hand, see Uppenbrick (Julia), “Arrhenius and Global Warming”, Science, No. 272-1996, p. 1122 (包括参考文献).

[7] 阿伦尼乌斯(S.),文章引用。

[8] Croll (James), “On the Physical Cause of the Change of Climate During Geological Epochs”, The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 1864, vol. 28. French translation in: Sur la cause physique des changements du climat au cours des époques géologiques, Montreuil, Éd. La ville brûle, 2010, p. 174-194.

[9] Delmas (Robert J.), Ascencio (Jean-Marc), Legrand (Michel), “Polar ice evidence that atmospheric CO2 20,000 yr BP was 50% of present”, Nature, N° 284-1980, p. 155-157.

[10] Arrhenius (S.), Worlds in the Making, chapter 2, New York, Harper & Brothers, 1908.

[11] 完成博士学位后的一段时间。

[12] Broecker (W.S.), “Climatic Change: Are we on the brink of a global warming?”, Science, Vol. 189, No. 4201, pp. 460-463.

[13] 他的演示是基于与过去格陵兰岛冰川档案中记录的类似气候事件的比较。

[14] Charney (J.G.) et al., 1979, “Carbon Dioxide and Climate: A Scientific Assessment”, Report of an Ad Hoc Study Group on Carbon Dioxide and Climate, National Academy of Sciences, Washington, D.C., 22 pages.

[15] 世界气候研究计划署(WCRP)是世界气象组织的一部分,后者是联合国的一部分。

[16] Jouzel (Jean), Petit (Michel), and Masson-Delmotte (Valérie), “Trente ans d’histoire du GIEC”, La Météorologie , N° 100-2018, p. 117-124.

[17] Raynaud (D.) “Au commencement étaient les bulles d’air de l’Antarctique”, Le Monde Diplomatique, November 2015, Climate Report.

[18] IPCC第一次报告(1990年)后,组织了联合国气候变化框架公约(UNFCCC),也被称为《气候公约》。1992年在里约热内卢举行的第一次地球首脑会议上签署了该文件。公约每年组织著名的COPs:缔约方会议或称为195个签署国会议。2015年在巴黎召开的第21届缔约方会议是法国最著名的缔约方会议。其目标是将大气中温室气体的浓度稳定在防止出现人为干扰危及气候系统水平(见缔约方会议-维基百科)。

[19] 气候怀疑论者一词指否认或尽量减少全球变暖的人为起源,甚至认为全球变暖由地球自身引起的人。


环境百科全书由环境和能源百科全书协会出版 (www.a3e.fr),该协会与格勒诺布尔阿尔卑斯大学和格勒诺布尔INP有合同关系,并由法国科学院赞助。

引用这篇文章: RAYNAUD Dominique (2024年3月13日), 从温室效应的发现到IPCC, 环境百科全书,咨询于 2024年7月27日 [在线ISSN 2555-0950]网址: https://www.encyclopedie-environnement.org/zh/climat-zh/discovery-greenhouse-effect-to-ipcc/.

环境百科全书中的文章是根据知识共享BY-NC-SA许可条款提供的,该许可授权复制的条件是:引用来源,不作商业使用,共享相同的初始条件,并且在每次重复使用或分发时复制知识共享BY-NC-SA许可声明。

From the discovery of the greenhouse effect to the IPCC

When and how the principle of greenhouse effect appeared? When and how a Swedish scientist found that the mean temperature of the Earth was sensitive to a doubling of atmospheric CO2 concentrations? How the slow awareness of the impact of human activities developed with time? What is the purpose of IPCC [1]? These are questions, among others, at the origin of the present contribution.

1. Climate has always impacted human societies

eric le rouge carl rassmussen
Figure 1. Erik the Red on his boat “Summer near the coast of Greenland, around the year 1000”, Painting by Carl Rasmussen (1841-1893). [Public domain]
Climate has always been an important factor in the evolution of human societies. The emergence and prosperity of the Sumerian and Mayan civilizations with their first ancient cities several millennia ago were often linked to climatic conditions supporting a sustainable agricultural production. Their fate and decline were often in synergy with the migrations of climatic zones over the millennia (see Climate Change and Ancient Civilizations).

Closer to us the Little Ice Age, extending from about the 14th to the 19th centuries, may have affected other societies such as the Viking settlement in Greenland established by Erik the Red around the year 1000 (Figure 1), or the Khmer civilization in Cambodia and its majestic Angkor temples. Both populations declined and left these places, probably in response to environmental changes related to colder conditions in Greenland and drier conditions in South-East Asia, at periods roughly corresponding to the Little Ice Age (See Climate Change and Ancient Civilizations).

Those variations in the past illustrate the connection between the history of human settlements and the evolution of climatic conditions over the last few millennia, without the possibility to question a decisive action of human activities on the climate. But it can provide information on the capacity of mankind to adapt to environmental changes.

By contrast, the story, starting in the 19th century that follows, cannot be told without taking into account the impact of human societies on the climate. It has been characterized by a number of scientific and technological discoveries, and a slow awareness of the scientific world, decision-makers (politicians but not only) and civil society. This story and this awareness of the impact of human activities on the environment have led today to one of the major challenges facing our societies in the 21st century.

I will unfold this story from historical milestones that are as follows:

  • early 19th century: Joseph Fourier discovers the greenhouse effect;
  • end of the 19th century: first calculation by Svante Arrhenius on the relationship between the carbon dioxide (CO2) in the atmosphere and the temperature of the earth’s surface;
  • 1958: Charles Keeling signs the birth certificate for the monitoring of carbon dioxide (CO2) in the atmosphere at the Mauna Loa station [2], which will provide a lasting proof of the influence of human activities on the composition of the atmosphere;
  • 1979: The Charney Report in the United States, the first official document by scientists addressed to the political world;
  • 1988: birth certificate of the IPCC.

2. Discovery of the greenhouse effect

joseph fourier
Figure 2. Joseph Fourier [Source: Amédée Félix Barthélemy Geille / Public domain]
In the 19th century, scientists realized that the atmosphere may affect the temperature of the planet. It was the great French physicist Joseph Fourier [3] (1768-1830) (Figure 2) who signed the birth certificate of the greenhouse effect theory in his Mémoire sur les températures du globe terrestre et des espaces planétaires, published in 1827 [4].

He explained that energy, in the form of visible light from the sun, can easily penetrate the atmosphere and heat the Earth’s surface, which in turn absorbs some of the sun’s radiation. Doing so the Earth’s surface gains energy that it loses by emitting some “dark radiant heat” (“chaleur rayonnante obscure” in the original French text of Joseph Fourier), now called infrared radiation by scientists. The atmosphere, in return, absorbs this dark heat and reflects some of it to the surface, reducing thus energy loss to space.

As a result of Joseph Fourier’s work, much was written about the absorption of dark radiant heat by gases in the atmosphere and its potential influence on climate. Physicists soon became interested in the average temperature at the earth’s surface: is it affected by the presence of heat-absorbing gases in the atmosphere [5]? It became clear that without such gases in the atmosphere, the surface temperature of our planet would be much colder, probably making life impossible.

Shortly after Fourier discovered the greenhouse effect, John Tyndall (1820-1893), an Irish autodidact, investigated whether the air could absorb the famous dark radiant heat emitted from the Earth’s surface.

But Svante Arrhenius was the first, in 1896, to calculate the impact of a variation in the CO2 content of the atmosphere on ground temperature.

Svante Arrhenius
Figure 3. Svante Arrhenius (1859-1927) [Source: Photogravure Meisenbach Riffarth & Co. Leipzig / Public domain]
Svante Arrhenius (1859-1927) was a Swedish chemist (Figure 3), who received the Nobel Prize in Chemistry in 1903 for his work in electrochemistry. However, since the end of the 20th century, following the awareness of global warming a new interest in his pioneering work on the greenhouse effect has emerged.

One of the great debates in the scientific world of the 19th century is to understand why, in the distant past, the Earth’s surface experienced Ice Ages – now known as glaciations. Different theories are being proposed – astronomical, physical or geographical. Arrhenius is fascinated by this question and he has the intuition that CO2 in the atmosphere can be a key factor in the existence of glacial cycles. First, he will collect all the existing and necessary data known at the time to estimate the effect of the CO2 content of the atmosphere on the Earth’s temperature. In 1896, after some particularly “tedious calculations” – by his own admission [6] – he proposed the first estimate of the impact of the CO2 level in the atmosphere on the planet’s temperatures. His calculations suggest that, if the amount of CO2 in the atmosphere were reduced by about half, this could lead to a drop in average temperatures in Europe of about 4 to 5°C, which corresponds to the conditions of an Ice Age [7].

This theory of CO2 playing a major role in regulating the Earth’s temperature was an alternative to the astronomical hypothesis backed by James Croll (1821-1890). This hypothesis develops the idea that climate change on a geological scale is due to the precession of the equinoxes and the variations in the Earth’s orbit [8].

The astronomical theory of climate has long been refuted. Then it became more precise and observations made on marine recordings promoted it until today as a pacemaker of the glacial cycles, i.e. establishing their chronology, but not their amplitude (See Les théories astronomiques du climat: une longue histoire, by Berger et Yin to be published in this encyclopedia).

antarctique - glace antarctique - bulles air glace antarctique
Figure 4. Air bubbles in an Antarctic ice sheet (EPICA borehole) [Source: © Photo E. Wolff/BAS/EPICA]
Eighty years later, Arrhenius’ prediction was confirmed by decrypting glacial archives. Like when glaciologists in Grenoble, measuring atmospheric CO2 concentrations in air bubbles (Figure 4) trapped during the last Ice Age in Antarctic ice, published in the British journal Nature: “Polar ice evidence that atmospheric CO2 20,000 year BP was 50% of present [9]“.

Today, the glacial cycles can be seen lying between the initial suggestions of Arrhenius and Croll, as the combined effects of astronomical and greenhouse gas variations, all amplified by a series of natural feedbacks.

Arrhenius also calculated, in the case of doubling atmospheric CO2, that the future global warming would be about 5 to 6°C, a prediction close to the maximum value of the current estimate range (between 1.5 and 4.5°C). However, contrary to current awareness of global warming, which predicts major risks for humanity in the future, he will estimate in an astonishing book intended to share with the public his vision of the evolution of the universe, that a warming of the Earth (linked to an increase in the level of CO2 in the atmosphere) would be an opportunity for humanity. He noted in particular that cold regions of the world could take advantage of improved climatic conditions and higher agricultural yields for the benefit of a fast-growing population [10].

3. The famous Mauna Loa curve of Charles David Keeling

co2 atmosphere - pollution - evolution pollution - courbe keeling
Figure 5. Historical record of atmospheric CO2 at the Mauna Loa Observatory since 1958. This record, illustrating the inexorable increase in CO2 due to anthropogenic emissions, and often referred to as the “Keeling curve” in tribute to its founding father, shows the monthly CO2 values (jagged curve in red) measured at the Mauna Loa Observatory. Keeling (Scripps Institution of Oceanography)initiated these measurements in March 1958. The curve in black represents the growth trend after correction for seasonal cycles (see text). [Source: © Esrl.noaa.gouv]
Following Arrhenius’ pioneering work, doubts are raised as to the accuracy of his calculations, sometimes questioning the fact that increased CO2 emissions may influence climate.  Likely, some people believed that our planet had a high capacity for self-regulation with, for instance, an ocean that could absorb all the excess CO2 in the atmosphere. Nevertheless, the theory of greenhouse warming still had its supporters and it will gradually be taken up again.

In the 1950s, partial and local measurements of CO2 concentrations in the atmosphere have been available for decades. However, nothing allowed observing an increase in the CO2 level since the beginning of the industrial era, when it was known that CO2 emissions into the atmosphere (even as early as the time of Arrhenius) were steadily increasing due to the combustion of fossil fuels. And yet this was crucial information for understanding the possible effect on the climate of increasing CO2 production by industry.

During his postdoc [11], Charles David Keeling, a young American geochemist (1928-2005), developed the first accurate technique for measuring CO2 concentrations in the atmosphere. In 1958, he initiated a series of samples at the observatory located at the summit of Mauna Loa, Hawaii. In the middle of the Pacific Ocean, at an altitude of 3,400 m, the site is far from anthropogenic sources of pollution and chosen for the purity of its air. From the first years of recording, the Keeling curve appeared perfectly jagged and increasing: jagged because the vegetation in the northern hemisphere, where Mauna Loa is located, absorbs CO2 from the atmosphere during its growth in spring and summer, then releases it during autumn and winter.

Thus was born the famous Mauna Loa curve, which was initiated by Keeling and continues inexorably today (Figure 5). It is widely cited by committees of scientific journals and science journalists. It has become a kind of icon of the anthropogenic greenhouse effect.

4. Wallace Broecker’s prediction (1975) and the term “global warming

In the 1970s scientists really start to be concerned about the potential impact of human activities on climate.

Between 1940 and 1975, the average surface temperature of the Earth, also known as global temperature, first decreased until about 1950 and then stabilized (Figure 6).

Wallace Broecker (Wally to his friends), who died in 2019 and who was one of the great geochemists of the second half of the 20th century, published in 1975 in Science, a leading scientific journal, an article entitled “Climatic Change: Are we on the brink of a pronounced global warming?[12] In this article, which popularized the expression “Global Warming”, he explains [13] how natural cooling could have masked, as early as 1940, the warming effect of the CO2 emitted by burning fossil fuels. He also predicts that 1975 is the dawn of a long period of rapid warming, which could lead, towards the beginning of the 21st century (i.e. now!), to a global temperature never reached during the last 1,000 years, compared to the ice core record at Camp Century (Greenland).

5. From Charney Report (1979) to the origin of  IPCC (1988)

temperature terre - evolution temperature terre - evolution temperature surface terre
Figure 6. Evolution of the Earth’s average surface temperature since 1880. Why does this global Earth temperature curve started in 1880? Because three of the longest and most complete temperature series begin in 1880: NASA’s Goddard Institute for Space Studies, National Oceanic and Atmospheric Administration’s National Climatic Data Center, and UK Meteorological Office’s Hadley Centre. These series are in good agreement with each other and help illustrate the global warming trend since the industrial revolution. The temperature scale on the left is plotted in terms of temperature anomaly relative to the mean temperature between 1951 and 1980. The 10 warmest years in this 140-year record have all occurred since the year 2000, with the 6 warmest in the last 6 years. [Source: NASA/NOAA website]
In the second part of the 70’s, human-induced global warming was not yet clearly observed (see Figure 6); nevertheless, anthropogenic CO2 was known to be accumulating in the atmosphere (Mauna Loa curve, Figure 5) and it is certainly difficult to know precisely when this issue emerged in the public arena.

A decisive step was the Charney Report [14], prepared for the National Academy of Sciences at the request of the American government and submitted to President Carter in 1979.

This report examines the results of climate models at the time simulating the climate response to an increase in atmospheric CO2. These models already predicted that a doubling of CO2 in the atmosphere would result in significant global warming between 1.5 and 4.5°C. This estimate, made 40 years ago, has hardly changed today!

An important part of the scientific community working on climate is then convinced of the importance of the issue and the need to deepen knowledge in the field of the climate response to an increase in the greenhouse gas concentrations of the atmosphere. In 1980, the World Climate Research Programme (WCRP) was set up [15]. The alert to decision-makers and civil society materialized in 1988 with the creation of the IPCC [1], whose the first chairman was Bert Bolin, one of the authors of the Charney Report.

The creation of the IPCC was decided jointly by two organizations under the United Nations (UN): the United Nations Environment Programme (UNEP) and the World Meteorological Organization (WMO).

6. IPCC (Intergovernmental Panel on Climate Change)

The reader will find a detailed description of the IPCC’s thirty-year history in number 100 of the journal La Météorologie published in 2018 [16] : the reasons behind its creation, its missions, its operation, its challenges and its successive reports.

IPCC’s mission is to periodically review the state of knowledge in three areas:

  •  evaluation of the scientific aspects of how the climate machine works and of climate changes ;
  • vulnerability of social, economic and natural systems to climate change and the possibilities for adaptation ;
  •  solutions to limit greenhouse gas emissions and mitigate the negative effects of climate change.

IPCC assessments are mostly based on internationally available peer-reviewed scientific, technical and socio-economic literature. IPCC experts work to identify the elements that are the subject of a consensus in the scientific community.

IPCC, which is responsible for feeding the political thinking facing a major civilization challenge, brings together 195 countries, i.e. almost all of the states of the world. It represents a unique institutional experience [17], which is a model today in the field of biodiversity and will no doubt be a model in other fields in the future.

Hundreds of eminent experts, specialists in the fields covered by the IPCC reports, spend time as authors to prepare assessments. Hundreds of other experts make ad hoc contributions as contributing authors and provide comments as reviewers.

The IPCC has neither mandate to carry out original research, nor to make recommendations to decision-makers. Its reports (Figure 7) are intended to be “policy-relevant” (decision help), but in no way “policy-prescriptive”. There is therefore an essential synergy between the scientific diagnosis synthesized by the IPCC reports and the political decisions taken within the Climate Convention [18] during its annual meetings: the Conferences of the Parties.

Finally, as regarding the IPCC budget – a question that the public may ask – it is supplied on the basis of voluntary contributions from the Member States and is around EUR 6 million. We can, therefore, speak of a cost at the best value for money for a humanitarian cause on a global scale!

7. Some key IPCC conclusions

7.1. To the question: Are human activities responsible for global warming?

Since the first IPCC report in 1990, the answer has evolved with advances in the knowledge of observations and models:

  • In 1990, experts admitted their difficulty in deciding between the share of observed climate change due to human activities and that resulting from natural climate variability.
  • In 1995, the second IPCC report cautiously stated: “The balance of evidence suggests a discernible human influence on global climate“.
  • Then, in 2007, the IPCC concluded that very likely, i.e. with more than 9 chances out of 10, most of the warming observed since the middle of the 20th century is linked to human activities. The diagnosis has clearly strengthened.
  • In the last report of 2014, this diagnosis is even better established.

7.2. About impacts

The consequences of climate change, both present and future, vary according to region, type of activity, economic sector, etc. Simulations indicate that in the event of average global warming of more than 4°C compared to pre-industrial levels (today this warming is of the order of 1°C) – which is likely to occur towards the end of this century if no action is taken to fight against global warming – the probable consequences will be as follows (this list is not exhaustive):

  • The Arctic summer ice pack and coral reefs threatened with extinction ;
  • Extreme weather phenomena (heat waves, tornadoes, floods, etc.) are likely to become more frequent and intense, with a higher risk for the most disadvantaged countries and populations;
  • The biodiversity will be increasingly at risk;
  • Phenomena may occur or even manifest themselves in the form of sudden and sometime irreversible changes, such as the acidification of the ocean, the reduction of permafrost (permanently frozen soils in polar regions or in the mountains at high altitude), the rise in sea levels with, on a millennium scale, the risk of the entire melting of Greenland  (i.e. a 7 m rise in sea levels).

7.3. Limiting the adverse effects of warming (mitigation and adaptation)

For mitigation, the emphasis is obviously on the target of staying below a 2°C warming compared to pre-industrial levels (the major objective of the Paris agreement at COP 21). This possibility requires significant reductions in global greenhouse gas emissions by 2050.

8. Some personal thoughts

In the 80s, I gave public lectures on climate change and global warming. The people were generally interested but for a large part of the audience the fact that human activities could affect the climate and produce a global warming was something they heard about for the first time. Over time, the audience became more knowledgeable and critical – with the press often highlighting the controversies of the climatosceptics [19] who, while initially denying the reality of global warming, now recognize its reality, but by attributing it to natural climate variability such as the cycles of sunlight activity or the effect of volcanic eruptions.

Criticism focused violently on calling into question IPCC and on marginal errors found into its reports.

Obviously, these criticisms have profoundly influenced public opinion in several countries, including in France at the time when Claude Allègre was at the forefront. That has always questioned me. Indeed, among climatosceptics of all kinds can be scientists – physicists or others. However, very few are experts in climate science. In contrast, IPCC scientists are experts in the scientific and technological fields concerned. They must be independent of any power or lobby and are able to reach a general consensus, a particularly difficult task.

In any case, it appears at the beginning of 2020 that more and more world leaders are recognizing global warming as one of the major challenges facing our societies in the 21st century. Also, a growing mass of public opinion wants the problem to be tackled as a matter of urgency. The IPCC’s message is clear: do everything possible to try to keep global warming below 2°C below pre-industrial levels (1850-1900) by the end of the century. This is still possible; however, drastic measures must be taken now. If nothing is done in the coming decade, then it will be too late.

What more can we say, except that it is a choice that affects the lives of our children?

This contribution to the Encyclopedia of the Environment is essentially based on a text to be published in the Mémoires de l’Académie Nationale de Metz.

 


References and Notes

Cover image. Left: M. de Saussure’s trip to the Cime du Mont-Blanc in August 1787, Copperplate engraving by Christian von Mechel, collection of Teylers Museum [Source: Christian von Mechel / Public domain] / Right: Mont Blanc by Matthieu Riegler [Source: Matthieu Riegler, CC-by]

[1] Intergovernmental Panel on Climate Change

[2] A Hawaiian term literally meaning “long mountain” and referring to an active red volcano located in the Hawaiian archipelago in the United States.

[3] Jean-Baptiste-Joseph or simply Joseph Fourier.

[4] Fourier (J.-B.-J.), “Mémoire sur les températures du globe terrestre et des espaces planétaire”, Mémoires de l’Académie Royale des Sciences de l’Institut de France, vol. VII-1827, pp. 570-604.

[5] Arrhenius (S.), “On the Influence of Carbonic Acid in the Air Upon the Temperature of the Ground,” The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 1896, 41: 237-76. French translation in: Sur les origines de l’effet de serre et du changement climatique, Montreuil, Éd. la ville brûle, 2010, p.197-243.

[6] Arrhenius’ “tedious” calculations are in the order of 10,000 to 100,000 calculations by hand, see Uppenbrick (Julia), “Arrhenius and Global Warming”, Science, No. 272-1996, p. 1122 (references included).

[7] Arrhenius (S.), article quoted.

[8] Croll (James), “On the Physical Cause of the Change of Climate During Geological Epochs”, The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 1864, vol. 28. French translation in: Sur la cause physique des changements du climat au cours des époques géologiques, Montreuil, Éd. La ville brûle, 2010, p. 174-194.

[9] Delmas (Robert J.), Ascencio (Jean-Marc), Legrand (Michel), “Polar ice evidence that atmospheric CO2 20,000 yr BP was 50 % of present”, Nature, N° 284-1980, p. 155-157.

[10] Arrhenius (S.), Worlds in the Making, chapter 2, New York, Harper & Brothers, 1908.

[11] Period following the completion of a PhD..

[12] Broecker (W.S.), “Climatic Change: Are we on the brink of a global warming?”, Science, Vol. 189, No. 4201, pp. 460-463

[13] His demonstration is based on the analogy with similar climatic events in the past as recorded in glacial archives in Greenland.

[14] Charney (J.G.) et al., 1979, “Carbon Dioxide and Climate: A Scientific Assessment”, Report of an Ad Hoc Study Group on Carbon Dioxide and Climate, National Academy of Sciences, Washington, D.C., 22 pages.

[15] The World Climate Research Programme (WCRP) is part of the World Meteorological Organization, which is part of the United Nations.

[16] Jouzel (Jean), Petit (Michel), and Masson-Delmotte (Valérie), “Trente ans d’histoire du GIEC”, La Météorologie , N° 100-2018, p. 117-124.

[17] Raynaud (D.) “Au commencement étaient les bulles d’air de l’Antarctique”, Le Monde Diplomatique, November 2015, Climate Report.

[18] Following the first IPCC report (1990) the United Nations Framework Convention on Climate Change (UNFCCC), also known as Climate Convention, was organized. It was signed at the first Earth Summit in Rio de Janeiro in 1992. This Convention annually organizes the now famous COPs: Conferences of the Parties (COP) or Conferences of the 195 signatory States. The best known COP in France is the COP 21, held in Paris in 2015. Its objective is the stabilization of atmospheric concentrations of greenhouse gases at levels that prevents any dangerous human disturbance of the climate system (see Conference of the Parties – Wikipedia).

[19] The term climatosceptic refers to a person who denies or minimizes the anthropogenic origin of global warming, or even the warming itself.


环境百科全书由环境和能源百科全书协会出版 (www.a3e.fr),该协会与格勒诺布尔阿尔卑斯大学和格勒诺布尔INP有合同关系,并由法国科学院赞助。

引用这篇文章: RAYNAUD Dominique (2020年5月19日), From the discovery of the greenhouse effect to the IPCC, 环境百科全书,咨询于 2024年7月27日 [在线ISSN 2555-0950]网址: https://www.encyclopedie-environnement.org/en/climate/discovery-greenhouse-effect-to-ipcc/.

环境百科全书中的文章是根据知识共享BY-NC-SA许可条款提供的,该许可授权复制的条件是:引用来源,不作商业使用,共享相同的初始条件,并且在每次重复使用或分发时复制知识共享BY-NC-SA许可声明。