Earth’s atmosphere and gaseous envelope

PDF
Encyclopédie environnement - atmosphère -température selon altitude

The Earth is surrounded by a gaseous domain, commonly referred to as the atmosphere, although, etymologically, this name is only justified for the lowest and densest layer, where the oxygen content allows humans to breathe. In this gaseous envelope, use leads to the distinction of several concentric layers, the troposphere up to about 12 km, then the stratosphere up to about 60 km and finally the mesosphere, up to altitudes beyond which the air becomes too rarefied to be modelled as a gas. The mechanisms specific to each of these layers justify their names; they impose a non-monotonous temperature variation, while pressure and density decrease regularly with altitude. This gaseous layer has a crucial influence on living conditions on Earth, both through its action on the climate, notably through the greenhouse effect, and through its role as a shield that filters a large part of the Sun’s radiation.

1. The layered structure of the atmosphere

Encyclopédie environnement - l’effet de serre - atmosphere - sunrise - atmospheric layer
Figure 1. At sunrise, from the International Space Station ISS) in June 2011, a NASA crew photographed the cross-section of the atmospheric layer. From the still very dimly lit ground, the colours change from red to orange, then to darker and darker blues, to the absolute black of the space. [Source : © NASA]
The gaseous envelope above the heavy elements of the Earth’s crust, the soil and seas, is often referred to as the atmosphere. At sea level, it is already 1000 times lighter than these and, gradually, its density decreases with altitude. The transition between the atmosphere and the Earth’s space environment (see The Upper Atmosphere) is usually located beyond 85 km above the ground, where the density of air is only one millionth (10-6) of what it is at sea level. This blue envelope (read The Colours of the Sky) is visible in the photograph on Figure 1.

The main characteristic of this medium is its gaseous nature, which means that molecules, which are constantly agitated at speeds above the speed of sound (about 340 m/s in air at sea level), have extremely frequent collisions. Let us be more precise: in air at moderate altitudes, the typical time between two collisions (about 10-9 seconds at sea level) is much shorter than the travel times of birds and aircraft flying in this environment, or than the characteristic wind and atmospheric flows. Beyond that, in the Earth’s space environment (see The Upper Atmosphere), the distances between molecules, atoms or ions are so large that this condition is no longer fulfilled and that this environment cannot be modelled as a gas. Moreover, this gaseous envelope is almost transparent to electromagnetic waves and therefore to light, but leaves acoustic waves (sounds) only a relatively limited range due to the viscosity of the air, sufficient to dissipate their energy.

Three of the most significant phenomena, heat transfer by conduction and convection [1], water content and absorption of ultraviolet radiation emitted by the Sun are used to define the concentric layers that make up the atmosphere. Between the ground and an altitude of around 8 km at the poles and 15 km at the equator, heat transfer by conduction and convection prevails and imposes a linear decrease in temperature: on average 6.5°C/km, a quantity that can vary between 5°C /km in air saturated with water vapour and 9°C/km in dry air (Figure 2). Why does the water vapour content influence this temperature distribution so much? This is due to the phenomenon of condensation that occurs at higher and higher altitudes, when the temperature and pressure decrease and the agitation of the nitrogen and oxygen molecules is no longer sufficient to carry the water molecules. This condensation releases latent heat (see Pressure, temperature and heat) which reduces the linear cooling of the temperature. This first layer is called the troposphere. It is the densest, wettest and most agitated. Its agitation comes from natural convection due to the fact that the hottest, and therefore lightest, gas is often located below a heavier gas, and from winds that are more or less organized on a global scale (see Atmospheric circulation: its organization).

Encyclopédie environnement - atmosphere -temperature selon altitude - troposphere temperature
Figure 2. Typical temperature distribution as a function of altitude through the concentric layers that make up the atmosphere. The temperature drop in the troposphere results from the conduction of heat from the ground to space. Warming of the stratosphere is caused by the absorption of ultraviolet radiation from the Sun. The temperature drops again in the mesosphere in the absence of a significant heat input. The evolution of the colours in the right column highlights their variation during the day from the blue of the sky to the black night of space.

Beyond the tropopause, the upper limit of the troposphere, the gas is too rarefied to efficiently transport heat by conduction and convection; it is then the absorption of ultraviolet radiation from the Sun that becomes predominant. It causes chemical reactions that transform oxygen (O2) into ozone (O3). These are exothermic (in other words, they release heat) and thus warm up a second layer, called the stratosphere, because it is possible to distinguish several sub-layers, or strata, depending on their oxygen and ozone composition. These strata are visible on Figure 1. The temperature is around -56°C in the tropopause, then rises to values close to 0°C in the stratopause, the upper limit of the stratosphere. Unlike the troposphere, in this stratified layer, the heaviest gas is systematically located below a lighter gas, which gives it very high stability and prevents the agitation of the troposphere from disturbing it. And even further from the ground, a third layer, the mesosphere, is so diluted that the absorption of ultraviolet rays is much less significant, which again causes a decrease in temperature with altitude. Figure 2 illustrates these three layers, their separations, and the transition to the heterosphere (see Upper Atmosphere), beyond the mesopause, the upper limit of the mesosphere.

2. How the properties of the atmosphere vary with altitude

– An exponentially decreasing pressure

Since this gaseous medium moves very slowly with respect to the proper movement of its molecules, it is justified to consider it as a fluid at rest and in equilibrium under the action of gravity. This equilibrium state is characterized by several variables that depend on altitude. The pressure within this gas is not subjected to any force other than gravity and this implies the exponential decrease illustrated in Figure 3, the justification for which can be found in Air and Water [2]. This exponential law requires that the pressure decrease as a function of altitude be proportional to the local pressure, high at sea level, where the pressure is maximum (1013 hPa) and lower and lower as altitude increases (the Pascal is the pressure unit of the international system: 1 Pa=1 N/m2 or newton per square meter).

– A homogeneous composition

Encyclopedie environnement - atmosphere - decroissance de pression
Figure 3. Illustration of the exponential decrease in pressure from sea level to space (blue curve), with a diagram representing the balance of forces between gravity (downward) and the pressure difference between the bottom and top of an infinitesimal layer (upward). This diagram makes it possible to deduce the  exponential law for the pressure variation. Based on “L’air et l’eau”, René Moreau, 2013. [Source : © EDP sciences]
Dry air is composed of four major gases, the concentrations of which are approximately as follows: 78% for nitrogen (N2), 21% for oxygen (O2), 1% for argon (Ar) and 0.035% for carbon dioxide (CO2). These percentages vary very little with altitude within the troposphere-stratosphere-mesosphere complex, due to molecular agitation, effective enough to impose this thermodynamic balance. This property has led to the name homosphere for this portion of the Earth’s gaseous envelope extending from the ground to about 85 km above sea level.

But the air in the troposphere is not dry, except at very great distances from water bodies that are sources of evaporation. Its water vapor content varies from zero in dry weather to its maximum possible, known as the saturation vapour pressure. Beyond this maximum, the water condenses into droplets, which form fogs and clouds. This saturation vapour pressure depends both on temperature (the partial pressure of water vapour increases from 0.6% of atmospheric pressure at 0°C to 7.4% at 40°C) and on local pressure: clouds form in depressions that bring rain and disappear in anticyclones where the pressure is higher than its average value.

– Where pressure decreases, oxygen is running out

The fact that the pressure undergoes a continuous and exponential decrease to its near zero limit beyond 40 km has important consequences for all forms of life (see The Origin of Life as seen by a geologist who loves astronomy). In the troposphere, where the absolute temperature [3] varies moderately (from 288 K on the ground to 200 K in the tropopause, where K is the kelvin, the temperature unit of the international system), the oxygen content varies almost like the pressure. At the top of Mont Blanc (4810 m), it has been halved. This means that before any hiking or climbing effort a mountaineer must breathe twice as fast as at sea level to provide the same amount of oxygen to his body, increasing his heart rate from 60 beats per minute to 120. This exercise is accessible to many healthy people and explains the large number of people attending this emblematic summit. In contrast, the high peaks of the Himalayas reach around 8000 m, where pressure and oxygen content have been reduced by a factor of three. Having to breathe three times faster than at sea level, before any effort is made, the hiker must raise his heart rate to 180 beats per minute, which makes hiking efforts almost impossible. This is why these high peaks are reserved for specially trained athletes who have been able to reduce heir normal heart rate to 50 beats per minute or less.

– As the density decreases, it becomes more difficult to fly

The mass per unit volume of air within the homosphere, often referred to as its density, is related to pressure and temperature by the equation of state of this gas, which is diluted enough to be assimilated to a perfect gas (see Pressure, temperature and heat). Since the absolute temperature varies relatively little, while the pressure varies from its maximum at sea level to almost zero values in the mesosphere, it is classic to consider that the density also varies exponentially. This rapid decrease in air density explains why birds only fly in the lower layers of the troposphere where they find air dense enough to carry them. Similarly, airliners, whose weight must be compensated, can only fly in the troposphere, where their large wingspan receives sufficient lift. Rockets, which go into the stratosphere and beyond, no longer have wings but only a small tail to stabilize them.

3. Heat transfer in the atmosphere

earth and sun
Figure 4. The Earth is not a disc with an area πR2 but a rotating sphere with an area 4πR2. As a result, the sunshine on each square metre is 4 times less than that which a disc would receive.

It was mentioned above that the temperature distribution within the troposphere decreases linearly from an average sea level value of about 15°C (see Figure 2). The key to understand this linear temperature distribution within the troposphere is the analysis of heat exchanges between the Sun, the Earth and its atmosphere. This question forms the basis for any analysis of climate variations, which is the subject of another section of this encyclopedia, of which this paragraph is only a brief introduction. The articles Radiation and Climate (link) and The Climate Machine in this encyclopedia provide a more precise and better documented analysis. The heat flux radiated by the Sun towards the Earth is about 1361 W/m2 (the watt is the power unit of the international system: 1W=1Joule/s=1N.m/s) at the average Earth-Sun distance; it varies during the year because of eccentricity (about 5%). This magnitude varies very slowly, essentially in accordance with the rhythm of variations in the Earth’s orbit around the Sun, over periods of about 100,000 years. Its variation is one of the causes of the alternation of glaciations and interglacial remissions such as the one we are experiencing, called the Holocene.

Two corrections are essential to deduce the heating of the Earth [4], [5]. First, we must subtract the albedo, that is, the fraction of this energy reflected back into space mainly from clouds, snow-covered surfaces and oceans. This reduces the heat flow to about 950 W/m2. Moreover, since the Earth is not an area disc πR2 but an area sphere 4πR2, this value must be further divided by four (Figure 4). This results in an average flow of 240 W/m2. And for the average ground temperature to vary only slightly, there must be a thermal balance such that it radiates the same 240 W/m2 flux towards space.

solar radiation
Figure 5. Solar radiation towards the Earth (yellow colour) decreased by albedo, and infrared radiation from the Earth towards space, affected by the greenhouse effect (red colour). Based on “L’air et l’eau”, René Moreau, 2013. [Source: © EDP Sciences]
To deduce from this equilibrium the average temperature of the Earth, it is necessary to use Stefan-Boltzmann’s law, which expresses the energy radiated by a black body as a function of its temperature. Indeed, while the Sun’s surface temperature is around 6000 K, which allows it to radiate in a very wide spectrum, that of the Earth, much lower, requires it to radiate as a black body (read The thermal radiation of the black body) in the infrared. This law predicts a ground temperature of 255 K, or -18°C. Clearly, the result of this calculation disagrees with the average temperature of the atmosphere at sea level, which is around +15°C. There is therefore another mechanism that can limit the cooling of the Earth. This is the greenhouse effect, thanks to which the atmosphere intercepts and reflects back to the ground a very significant fraction of the Earth’s infrared radiation, in the order of 150 W/m2. Thus, at thermal equilibrium, the Earth’s surface emits an average of 390 W/m2, instead of 240 W/m2, which explains why the average temperature at sea level is around +15°C. The respective contributions of solar radiation to the Earth and infrared radiation from the Earth to space are illustrated in Figure 5. The focus associated with this article explains the physical origin of this greenhouse effect, linked to the composition of the atmosphere, as well as its increase during the industrial era.

4. Messages to remember

  • The Earth’s atmosphere is structured in 3 gaseous layers: the troposphere, dense enough to allow life and flight for birds and airplanes, the stratosphere, which protects us from the ultraviolet radiation emitted by the Sun, and the distant mesosphere, which is extremely sparse.
  • The air in the atmosphere is made up of 4 major gases whose proportions do not vary much with altitude: nitrogen (71%),oxygen (21%), argon (1%) and carbon dioxide (0.035%).
  • Heat exchange within the atmosphere determines the Earth’s average temperature. The average heat flux radiated by the Sun that reaches the ground is about 240 W/m2 and the average temperature of the planet must be such that its own radiation to space has exactly the same value. As a result, this average temperature is close to +15°C (or 288 K).
  • These radiated fluxes are influenced by two important effects: the albedo, which reduces the solar radiation reaching the ground and redirects it towards space, and the greenhouse effect, which intercepts part of the Earth’s infrared radiation towards space and returns it to the ground.

References and notes

[1] Conduction is the mode of heat transfer within a material at rest in the absence of radiation; it results from the agitation of elementary particles, the molecules in the case of gases. Convection refers to the complementary contribution due to movement, which amplifies this heat transfer by evacuating the hot fluid and replacing it with cold fluid, which in turn heats up and so on.

[2] Air and water, René Moreau, EDP sciences, Grenoble sciences collection, 2013

[3] The absolute temperature is counted from absolute zero. It is equal to the temperature in degrees centigrade, counted from a conventional origin, that of melting ice at sea level, increased by 273.15. It is measured in kelvin (K).

[4] Is Man responsible for global warming? André Legendre, EDP Sciences, 2009

[5] Humanity in the face of climate change, Robert Dautray and Jacques Lesourne, Odile Jacob sciences, 2009

Registering


The Encyclopedia of the Environment by the Association des Encyclopédies de l'Environnement et de l'Énergie (www.a3e.fr), contractually linked to the University of Grenoble Alpes and Grenoble INP, and sponsored by the French Academy of Sciences.

To cite this article: MOREAU René (November 10, 2021), Earth’s atmosphere and gaseous envelope, Encyclopedia of the Environment, Accessed July 27, 2024 [online ISSN 2555-0950] url : https://www.encyclopedie-environnement.org/en/air-en/earths-atmosphere-and-gaseous-envelope/.

The articles in the Encyclopedia of the Environment are made available under the terms of the Creative Commons BY-NC-SA license, which authorizes reproduction subject to: citing the source, not making commercial use of them, sharing identical initial conditions, reproducing at each reuse or distribution the mention of this Creative Commons BY-NC-SA license.

地球的大气层和气体层

PDF
Encyclopédie environnement - atmosphère -température selon altitude

  地球周围包裹着气态区域,通常称为大气。尽管从词源上讲,大气这个名字只适合于最低和最密集的大气层,这里的氧气含量能够维持人类的呼吸。在大气层中,存在着几个不同的同心层。首先是对流层,高达 12 千米,其次是平流层,高达 60 千米,最后是中间层。超过这个高度,空气过于稀薄,无法视作气体。不同层具有各自特定的性质,因此需要不同的命名,不同层的温度非单调变化,而且气压和密度随海拔高度有规律降低。大气层对地球上的生存条件有着至关重要的影响。 一方面是因为它对气候的影响,也就是温室效应;另一方面是因为它作为屏障过滤了大部分太阳辐射。

1. 大气的分层结构

环境百科全书-地球的大气层和气体层-大气层的横截面
图1. 2011 年 6 月,美国国家航空航天局(NASA)的一名工作人员在国际空间站(ISS)的日出时拍摄到了大气层的横截面。颜色从光线很暗的地面由红色变为橙色,然后是越来越深的蓝色,最后是纯黑。
[来源:美国国家航空航天局]

  地壳、土壤和海洋等重元素之上的气体层通常称为大气。海平面上,大气已经比这些重元素轻了1000 倍,随着海拔的升高,大气密度进一步逐渐减小。通常来说,大气和地球空间环境(参见高层大气)之间的过渡地带位于距离地面 85 公里以上的地方,那里的空气密度只有海平面的百万分之一(10-6) 。图 1 的照片可以看到这个蓝色的气态包膜(即为天空的颜色)。

  这种介质的主要特征是即其气体性质,这意味着速度大于声速的分子(海平面空气中约 340 米/秒)会极其频繁地发生碰撞。更精确地说:在中等高度的空气中,两次碰撞之间的典型时间(海平面上大约10-9秒)比鸟类和飞机在这种环境中飞行的时间短得多,也比典型的风和大气运动的时间短得多。海拔更高处,在地球的太空环境中(参见高层大气),当分子、原子或离子之间的距离如此之大, 不再满足碰撞条件时,环境已经无法被视作气体。此外,大气层对电磁波和光线几乎透明,但由于空气的粘性,声波(声音) 的能量较易耗散,传播的范围相对有限。

  大气的同心层可以由三个重要的现象定义:热传导和对流[1]水含量以及太阳紫外线辐射的吸收。在两极地区的地面与海拔约 8 公里之间,在赤道地区的地面与海拔 15 公里之间, 热传导和对流导致温度随高度的线性下降:平均而言,海拔升高 1  千米气温下降 6.5°C , 这个值在水汽饱和的大气中是 5°C/千米,在干燥空气 中是 9°C/千米 (图 2)。为什么水汽含量会影响温度分布?这是由于海拔高处会出现凝结现象。当温度和压力下降时,氮和氧分子的搅动不再足以携带水分子。这种凝结释放潜热(见压强、温度和热量),从而削弱温度的线性冷却。第一层被称作对流层,因为它是凝结现象最密集、最潮湿、最激烈的一层。对流层的搅动来自自然对流,这是由于最热的气体也是最轻的气体通常位于较重气体之下,搅动同时来自地球上或大范围或小范围内形成的风(参见大气环流及其构成)。

环境百科全书-地球的大气层和气体层-构成大气的同心层典型的温度分布随海拔的变化
图2. 构成大气的同心层典型的温度分布随海拔的变化。对流层的温度下降是由于 热量从地面传导到太空造成的。平流层的变暖是由于吸收了太阳的紫外线辐射造 成的。在没有大量热量输入的情况下 ,中间层的温度再次下降。右栏中颜色的变  化体现了它们 在白天从蓝色的天空 变为太空的黑 夜。(图 中 :Altitude- 高度、  Température-温度、 Everest- 珠穆 朗 玛 峰 、 avions- 军用飞机 、Tropopause- 对流层顶、 ballons   sondes- 探空气球 、 Stratopause- 平流层顶 、 Mésopause- 中间层顶 、 Troposphère- 对流层、 Stratosphère- 平流层、 Mésosphère- 中间层、Hétérosphère-非均质层)

  超过对流层顶,气体过于稀薄以至无法通过传导和对流有效地输送热量;对于太阳紫外线辐射的吸收才是传输能量的主要方式。这会引发氧气(O2)转化为臭氧(O3) 的化学反应。反应期间释放热量,可以提升第二层大气即平流层的温度。

  平流层的命名基于它本身可以分层的特性,可以根据氧气和臭氧的组成分为几个子层或层,如 图 1  所示 。对流层顶温度在- 56°C 左右,在平流层顶(平流层的上限)上升到接近 0°C。与对流层不同的是 ,在平流层这个分层的层中 ,最重的气体总是位于较轻的气体之下,形成了很高的稳定性, 防止了对流层的搅动干扰。在离地面更远的第三层,即中间层,由于被稀释的程度太大,对紫外线的吸收不再显著,再次导致温度随着海拔的升高而下降。图 2 说明了大气的三层的区分 、过渡到超过中间层顶(中间层的上限)的非均质层(见高层大气)。

2. 大气的性质随高度是如何变化的

  ——气压呈指数递减

  由于这种气体介质相对于其分子的适当运动来说运动得非常缓慢, 因此可以将它看作是在重力作用下处于静止和平衡状态的流体。这种平衡状态有几个取决于海拔高度的变量。除了重力之外,大气压不受任何外力的影响,这体现了如图 3 所示的指数下降,可以在空气和水[2]中找到原因。这个指数规律要求气压是随高度而降低的函数且正比于当地的压力, 在海平面处气 压最 高(1013hPa),随着高度的增加气压越来越低(帕斯卡是国际体系的压力单位: 1pa = 1N/m2 或牛顿每平方米)。

  ——成分均匀

环境百科全书-地球的大气层和气体层-从海平面到太空的气压呈指数下降
图3. 图解为从海平面到太空的气压呈指数下降(蓝色曲线),用一个图表描述重 力(向下)和无穷小层的底部和顶部之间的压力差 (向上)之 间的力的平衡。我们可以通过这张图推导出压力变化的指数定律。基于“ 空气与水 ”,René Moreau, 2013。[来源:EDP 科学](图中:Altitude- 高度、Pression- 压力)

  干燥的空气主要由四种浓度大致如下的气体组成:氮气(N2 ) 78%,氧气(O2 ) 21% ,氩气(Ar) 1%,二氧化碳(CO2 )0.035% 。在对流层-平流层-中间层复合结构中,分子的搅动足以达成一种热力学平衡,气体所占的百分比不会随海拔变化发生较大变化。因此,从地球上的地面延伸到海平面以上 85 公里的气体称为均质层

  但是对流层中的空气并不干燥,除非距离作为蒸发源的水体非常远。水汽含量在干燥天气为零 ,可变化到可能的最大值,即饱和水汽压。超过这个上限,水汽就凝结成水滴,形成雾和云。这种饱和水汽压既取决于温度(水汽压从 0℃时占大气气压 的 0.6%上升到 40℃时的 7.4%), 也取决于局部气压:在低气压中形成云层,带来降雨,云层在气压高于平均值时消失。

  ——当压力降低时,氧气耗尽

  超出 40 千米的范围,气压持续呈指数下降至接近于零的极限,这对所有形式的生命有着重要影响(参见一位热爱天文学的地质学家眼中的生命起源)。在对流层中,绝对温度[3]变化适度(从地面上的 288  K 到对流层顶的 200 K,K 代表开尔文,是国际体系的温度单位),氧含量的变化与压力的变化比较类似。在勃朗峰(4810 米)顶端,氧含量较地面减少一半。这意味着,登山者在进行任何徒步旅行或攀登活动时必须以位于海平面两倍的速度呼吸,这样才能为身体提供同等数量的氧气,而心率会从每分钟 60 次提高到 120  次。健康的人差不多都可以攀登勃朗峰,这也解释了为什么会有这么多人挑战这个具有象征意义的高峰。相比之下,喜马拉雅山的高峰达到 8000  米左右, 那里的压力和氧气含量降低了三倍。徒步者必须以位于海平面时三倍的速度呼吸,徒步者必须把心率提高到每分钟 180 次,大大增加了徒步的难度。这样的一些高峰只能留给那些经过特殊训练的运动员,他们能够把正常心率降低到每分钟 50 次或更低。

  ——随着密度的降低,飞行变的更加困难

  均匀层中单位体积中空气的质量一般称为密度,根据气体状态方程密度与压力和温度有关,气体不断稀释可类同为标准气体(见压强、温度和热量)。由于绝对温度的变化相对较小,而气压的变化从海平面的最大值到中间层几乎为零值的压力,所以通常认为密度也呈指数变化。空气密度的快速下降解释了为什么鸟类只在对流层的低层飞行,因为那里的空气密度足以托举它们。同样,客机的重量决定它只能在对流层飞行,客机的大机翼帮助它在对流层获得足够的升力。火箭会进入平流层和更远地方,火箭没有机翼,只是依靠小尾巴加以稳定。

3. 大气中的传热

环境百科全书-地球的大气层和气体层-太阳照射地球
图4. 地球不是一个面积为 πR2 的圆盘,而是一个面积为4πR2 的旋转球体。因此 , 照射在每平方米上的阳光比圆盘接收到的阳光少 4 倍 。(图中: Plane  disc at rest Surface: πR2– 在静止表面的平面圆盘面积:πR2 、Rotating sphere Surface:4 πR2– 旋 转球体表面积:4 πR2

  上文提到,对流层内的温度分布从海平面平均约 15°C 呈线性下降(见图 2)。理解太阳、地球及其大气之间的热交换是理解对流层内这种线性温度分布的关键。这是分析气候变化的基础问题,是本百科全书另一节的主题,此处只做简要介绍。百科全书的两篇文章“ 辐射与气候”(链接)和“气候机器”提供了更加精确和详细的描述分析。在平均地日距离下,太阳向地球辐射的热流约为1361 W/m2 (瓦特是国际系统的功率单位:1W= 1  焦耳/s=1N.m/s);并因为离心力(大约 5%)的作用在一年之中有所变化。太阳向地球辐射的热量的总量变化得非常缓慢,基本上与地球绕太阳轨道的变化节奏一致,周期约为 10 万年。该变化是冰期和间冰期交替的原因之一,我们正在经历的全新世就处于间冰期。

  为准确推导地球的发热率需要进行两种校正[4][5]。首先,我们必须减去反照率,即主要从云层、被雪覆盖的表面和海洋反射回太空的部分能量。这将使热量减少到 950  W/m2  左右。此外,由于地球不是面积为 πR2 的圆盘,而是表面积为4πR2 的球体, 所以必须再除以 4(图 4),得出平均热量 240W/m2。同时,因为平均地面温度变化较小,所以地球一定向空间辐射与 240 W/m2 相等的通量,形成一个热平衡。。

环境百科全书-地球的大气层和气体层-太阳对地球的辐射因反照率而减少
图5. 太阳对地球的辐射(黄色)因反照率而减少,而地球对太空的红外辐射(红 色)则受温室效应的影响而减少。基于《空气 等》,René Moreau, 2013。[来源:EDP  科学](图中:Albédo- 反射率、Rayonnement solaire moins albédo- 白昼太阳辐射、 Effet  de  serre- 温室效应、Rayonnement  infrarouge  émis  par  le  sol  et  traversant  I’atmosphère- 通过地面发射的红外辐射穿过大气层的部分 、 Rayonnement  total
émis par le sol- 地面总辐射 、 Sol et oceans- 地面与海洋)

  要从这种平衡中推导出地球的平均温度,需要使用斯蒂芬- 玻尔兹曼定律,定律将黑体辐射出的能量表示为其温度的函数。事实上,太阳表面温度约 6000 K,可以辐射出非常宽的光谱,而地球的表面温度要低得多,以黑体的形式进行红外辐射(参阅黑体的热辐射)。斯蒂芬- 玻尔兹定律预测地面温度为 255k,或 – 18°C。显然,这一计算结果与海平面大气平均温度(约+15℃)不符。因此,存在限制地球冷却的另一机制,即温室效应。由于温室效应,大气层拦截了地球上相当大一部分的红外辐射,将大约为150  瓦/平方米的辐射反射回地面。因此,在热平衡 中,地球表面平均排放 390 W/m2,而非 240 W/m2 ,这就解释 了为什么海平面的平均温度在+15℃左右。 图 5 分别说明了太阳向地球辐射以及地球的红外辐射对于地球温度的作用。与本文相关的焦点文章解释了温室效应的物理起源、与温室效应相关的大气组成,以及工业时代温室效应的增加。

4. 需要记住的信息

  • 地球的大气层由三层气体构成:对流层 ,密度足以让鸟类和飞机生活和飞行;平流层,保护我们免受太阳发出的紫外线辐射;以及极其稀疏且遥远的中间层。
  • 大气中的空气由四种主要气体组成 ,它们的比例随高度变化不大: 氮气(71%)、氧气(21%)、氩气(1%)和二氧化碳(0.035%)。
  • 大气内部的热交换决定了地球的平均温度 。太阳辐射到地面的平均热通量约为 240 瓦/平方米,行星的平均温度必须使其自身对空间的辐射具有完全相同的值。因此,地球的平均温度接近+15℃(或 288 K)。
  • 辐射通量受到两个重要效应的影响 :反照率,减少到达地面的太阳辐射并将其反射到太空;温室效应,拦截地球的部分红外辐射,阻止其到太空,并将其返回地面。

 


参考资料及说明

[1] 传导是静止的材料在没有辐射的情况下传热的方式;由基本粒子(气体中的分子)的搅动引起。对流是指由于运动而产生的互补贡献,它通过将热流体抽走,并用冷流体取代它,从而放大了这种热传递,冷流体反过来又加热,等等。

[2] 大气和水体, René Moreau, EDP sciences,格勒诺布尔科学文集, 2013

[3] 绝对温度是从绝对零度开始计算的。它等于摄氏温度,从传统的起源计算,海平面融化 的冰增加了 273.15 摄氏度。它的测量单位是开尔文(K)。

[4] 人类应为全球变暖负责吗? André Legendre, EDP Sciences, 2009

[5] 面对气候变化的人类,Robert Dautray and Jacques Lesourne,  至理名言雅各布科学, 2009


The Encyclopedia of the Environment by the Association des Encyclopédies de l'Environnement et de l'Énergie (www.a3e.fr), contractually linked to the University of Grenoble Alpes and Grenoble INP, and sponsored by the French Academy of Sciences.

To cite this article: MOREAU René (March 11, 2024), 地球的大气层和气体层, Encyclopedia of the Environment, Accessed July 27, 2024 [online ISSN 2555-0950] url : https://www.encyclopedie-environnement.org/zh/air-zh/earths-atmosphere-and-gaseous-envelope/.

The articles in the Encyclopedia of the Environment are made available under the terms of the Creative Commons BY-NC-SA license, which authorizes reproduction subject to: citing the source, not making commercial use of them, sharing identical initial conditions, reproducing at each reuse or distribution the mention of this Creative Commons BY-NC-SA license.