季节预测

Encyclopedie environnement - prevision saisonniere - couverture

PDF

  本文所呈现的是用于数值天气预报的数值模式如何提供未来几个月的天气信息,尽管该数值模式有其局限性。它展示了科学家们是如何进行合作,从而使这一工作顺利进行的。尽管这项活动在某些方面已经被成熟的应用,但它仍然算是一项研究活动。

1. 为什么要做一整个季节的天气预测。

  天气预报是基于计算机对大气-海洋-冰冻圈-陆面观测的流体力学方程的解析(见天气预报介绍)。因此,基于第D天的观测,我们可以部分精确地描述D+1天的状态。再通过一些简单的论证,我们可以通过同样的步骤推断出D+2天的情况,然后得到D+3天、D+4天…… 我们可以相信,如果不考虑计算资源,预测将不会受到限制。但是实际上,人们很快发现随着时间的推移天气预报的准确度下降的很快。几天后(2016年大约一周),预报的天气情况与前几年同一个月随机出现的情况相比,并不更接近实际情况。Lorenz(1963)[1]表明,即使天气模式是完美的,描述初始条件时的一个非常小的误差也使得无法预测超过10-15天的大气极限。这一观点很容易理解,他就如同蝴蝶效应

  因此很难在季节层面做出确定性预测。然而,自然界中有一些现象在几个月内的演化并不混乱(见第3节),它们会影响大气的行为。并且,在许多人类、农业、工业或旅游活动中,确实需要进行长期预测。如果我们有模拟这些缓慢现象演变的可靠数值模式,能够大体上重现这些现象对感知时间(即温度、风、雨等)的影响,然后,我们就有可能提供一些未来几个月将发生什么的信息。季节预测和每个月预测的一个区别是每月预测的目的是描述一个粗略的年表(例如,一月内的较热的那部分)。而季节预测,它摒弃了任何按时间顺序的方法,是用纯粹的统计术语来描述一个季节(例如,明年冬天出现低温的可能性很大)。在2016年,月的预测通常预测到下两个月;季节预测通常能预测到之后7个月。在下文中,我们将描述这些季节预测是如何产生的,以及可以从中得到什么。

2. 是的,但我们如何做出这些预测呢?

  季节预测因其所使用的数值工具,继承了天气预报。然而,从第一次短期天气预报到第一次季节预测,间隔了30多年时间[2]。其实,这个过程中有三个绕不开的技术难关一一被突破:

  • 20世纪80年代初:出现了覆盖全球的大气模式和逐日观测,
  • 20世纪90年代初:在考虑到几十年平均值情况下,20世纪90年代初出现的海洋-大气耦合模式的全球模拟结果与观测结果相当相似。
  • 21世纪初:建立三维Argo全球海洋观测网络[3]

  我们有时会讨论在24小时、10天、一个月、6个月、10年甚至到本世纪末的无缝隙预测。这句话强调了科学技术共享的必要性。因此,法国气象局用于季节预测的模式也是用于IPCC(政府间气候变化专门委员会)气候情景模拟的模式,其大气和陆面分量来自法国气象局用于短期天气预测的模式。

  从实用的角度来考虑,季节预测和短期预测之间存在着实施上的差异

  • 海洋是气候系统中慢变的部分,其准确模拟和初始化在季节预测中有至关重要的作用。其只有在两三天之后应用才是合理的。
  • 我们做出的季节预测不是确定性的,而是统计性的。因此,有必要进行至少50次预测,以获得可靠的统计估计。我们讨论的是集成预报(参见集成预报)。
  • 在短期内,不确定性的主要来源与初始状态有关。在季节尺度上,则需要考虑模拟气候和实际气候之间的差异。

3. 预测是符合事实的!

  评估季节预测的困难长期以来阻碍了人们对科学方法有效性的共识。

  在短期预测中,可以在几个月后评估预测系统的成功率和失败率。在季节预测中,要做出可靠的判断需要几十年的时间。因此,我们通过重新预测来回顾过去。重新预测是指在多年以后做一个回顾性的预测活动,但没有作弊,即不使用任何预测初始时刻之后的信息。这些所谓的重新预测会包括长期(出于统计原因)和近期(出于观测系统的均一化原因)。在业务应用中重新预测始于1993年(卫星测高观测开始),而研究工作中重新预测始于1979年(卫星全球海洋温度观测开始)。制作一套涵盖过去30年或40年的重新预测需要6个月到1年的时间。这种等待时间使得研究人员不受偏见的影响,即根据最高的成功率从众多系统中选择最佳系统。成功概率通常由一个叫做预测评分的指数来衡量。预测评分通常是介于0和1之间的数字,例如系统地预测某个月份和区域的气候,1对应于一个完美的预测。而当预测结果系统性地与观测结果相反时,预测评分可能会是一个负值。一个经常使用的评分是两个时间序列之间的相关系数。这个指数在-1和1之间,如果两个序列是独立的,则指数为0;如果一个序列可以通过线性代数关系得到另一个序列,则指数为1。其精确定义基于统计分布的二阶矩(Jolliffe和Stephenson,2012[4])。

  在我们的经纬度地区,冬天温和或是寒冷的概念只是一个统计学意义上的事。在同一个冬天温和与寒冷都会出现。有时后者的数量更多或程度更剧烈。通过50个逐日预测成员的集合,可以重建预测概率。估计给定冬季观测的概率要困难得多,因为只有90个值可用,而且这些值不是独立的,因为从一天到下一天存在一定的持续性。因为它没有考虑到非确定性预测中的不确定性,所以用相关系数进行评估是不够的。同时,因为要预测的现象(寒潮的概率)只能粗略估计,所以概率性评估更合理。概率性评分指数有许多(Jolliffe and Stephenson,2012[4])。尽管研究人员对它们感兴趣,也很难在两个模型之间进行比较,因为单个指数并不一致。

环境百科全书-季节预测-预测的月温度和观测月温度之间的相关系数
图1. 赤道中太平洋预测的月温度和观测月温度之间的相关系数,作为成熟度(月)的函数。预测时间依次为11月1日(a)、2月1日(b)、5月1日(c)和8月1日(d)。红色曲线代表法国气象局模式的分数,黑色曲线代表初始条件的持续性。该系数的计算时间为1979年至2012年。

  为了获得更可靠的评估,我们将目光投向变化较为平缓的现象,这些现象在一个季节的过程中保持恒定的特征,同时具有较强的年际变化。目前有三方面现象可以观测和模拟,并且现在可以得到令人满意的分数。

  20世纪80年代以来的一个众所周知的现象(Shukla 1981)[5], 赤道太平洋的表面温度:如图1所示ENSO现象(厄尔尼诺-南方涛动)具有长达7个月的显著可预测性(红色曲线);在冬天和秋天,这种现象非常持久(黑色曲线),但该模式也表现得很好或更好。

  最近发现的现象:北极冰盖的范围(Chevallier et al., 2013) [6]

环境百科全书-季节预测-预测的欧洲季节温度和观测季节温度之间的相关系数
图2. 法国气象局模式预测的欧洲季节温度和观测季节温度之间的相关系数。预测日期为11月1日(a)、2月1日(b)、5月1日(c)和8月1日(d),预测结果为第2至第4个月的平均值。全球变暖的趋势已经被减去。该系数的计算时间为1979年至2012年。

  在实践中不太有用,但在科学上很有趣:赤道平流层的风(Boer and Hamilton, 2008) [7]

  然而,有必要估计中纬度地区的可预测性,即使它很低。这类预测质量的常用衡量标准是预测的季节平均值和观测平均值之间的相关系数(如上所述),其优点是被长期使用,且普遍适用,即使它在30年序列中不是非常稳健,并且没有考虑预测集合的分散性。

  图2显示了欧洲各地四季温度预测(DJF、MAM、JJA、SON,其中每个大写字母是一年中一个月的首字母)的系数值。因为全球变暖趋势会人为地夸大分数,因此该趋势被减去。

环境百科全书-季节预测-观测到的季节平均温度与预测前一个月的月温度之间的相关系数
图3. 观测到的季节平均温度与欧洲预测(持续性预测)前一个月的月温度之间的相关系数。季节平均值分别为冬季(a)、春季(b)、夏季(c)和秋季(d)。全球变暖的趋势已经被减去。该系数的计算时间为1979年至2012年。

  小于0.2的系数被认为不提供可用信息。可以看出,可预测性因地区和季节而异。 在冬季(图2a),海洋表面温度可预测性较高。在夏季(图2c),该大陆的东南部可预测性较高。图3显示了相同的分数,但针对初始情况的持续性进行了预测。可以看出,在平季,这种低成本的计算方法通常比模式更好。

4. 预测的实际执行情况

  第2节指出,模式的系统性缺陷包括误差(可以事后纠正)和不确定性(必须进行估计)。这意味着不仅要进行预测,还要进行重新预测(该术语的定义见第3节)。在研究工作中,我们只进行重新预测。

  业务性预测包括将预测情况的平均值与称为参考气候的多年平均值进行比较。为此,我们对过去几年进行了一系列重新评估。这一工作还用于估计预测的分数。重新预测和预测结果之间必须有极高的相似性。这意味着这两种预测仅在初始条件上有所不同。在每月进行的预测和回顾性预测之间,不能对模式进行任何改动。考虑到重新预测所需的时间(六个月到一年),预测中心每两年或三年才更换一次版本。

  为了估计与模式缺陷相关的不确定性,最常用的方法是多模式方法。事实上,每个模式都是建立在特定于实施它的中心的选择和假设的基础上的。有时两个模式的预测会不一致。例如,欧洲(Eurosip)、北美(NMME)和亚洲(APCC)的机构会同时使用多个模式的预测。他们将这些预测以地图或公告的形式免费提供。在美国,欧洲(欧盟哥白尼气候变化服务项目),每个月都可以免费获取接下来六个月的数据。

5. 季节预测的目的是什么?

  季节预测基本上是通过网络以地图或公告的形式分发给所有潜在用户(欧洲中期预测中心[8]法国气象局[9])。赤道太平洋发生热事件(厄尔尼诺)对于干旱、渔业资源、洪水风险等方面的影响有充分的说明[10]

  除此之外,还有为特定用途开发的季节预测应用。尤其是在预测结果较可靠的热带地区,预报员和用户之间通常通过统计调整进行合作。这种方法需要在长时间内重新预测,并且不经常更改版本。例如,塞内加尔河上大坝的管理包括季节预测部分(Bader等人,2006[11])。在南美洲,Eurobrisa consortium正在进行一些统计调整[12]

  在欧洲,用户往往因为预测分数低而感到气馁(Bruno Soares和Desai,2016[13])。在法国,对小麦产量(Canal,2014[14])或河流流量和土壤湿度(Singla等人,2012[15])的研究已经展开。最后一个应用也已经开始,欧洲正在开发其他应用领域的原型,正在进行的项目有[16]:冬季环境气候对英国交通的影响,西班牙可再生能源生产,瑞典水电管理。

6. 季节预测的未来会成为什么样子?

  由于季节预测的现实情况往往是很耗资,同时也受到物理(蝴蝶效应)和技术(数字计算机资源)的限制,其结果乍一看往往令人失望。然而,与天气预报系统相比,它的额外成本非常低,如果你接受风险管理,它所能提供的服务是不可否认的。如果我们将2015年的最新水平与2005年或1995年的水平进行比较,预测质量的进步是显而易见的,但从一年到下一年的进展非常小,这有时会给人一种停滞的错误观念。

  最可预测的进展将来自模式水平和垂直分辨率的提高,以及热源和湿度源表示的复杂性(称为物理参数化)。事实上,这种努力与改进天气预报和气候模式的努力是共同的。但也它有更具体的研究方向,例如在方程中引入扰动来模拟模式误差(Batté和Doblas Reyes,2015[17]),或者和预测的统计后处理一样,考虑预测期间的模式误差。缓慢改变参数,如积雪或土壤湿度,在系统的季节尺度记忆中发挥作用。在预测和重新预测中对其初始化的改进也是一个潜在的改进方面。

 


参考资料及说明

[1] Lorenz (1963). Deterministic nonperiodic flow. Journal of Atmospheric Sciences,20, 130-141.

[2] Palmer, T.N. and Anderson, D.L.T. (1994). The prospects for seasonal forecasting – a review paper”. Quarterly Journal of theRoyal Meteorological Society, 120, 755-793.

[3] ARGO. Part of the integrated observation strategy.

[4] Jolliffe IT和Stephenson DB(2012)预测验证。第二版,奇切斯特(英国),威利·布莱克威尔

[5] Shukla J. (1981) Dynamical predictability of monthly means. Journal of Atmospheric Sciences, 38″,2547-2572.

[6] Chevallier M., Salas y Mélia D., Voldoire A., Déqué M. and Garric G. (2013). Seasonal Forecasts of the Pan-Arctic Sea IceExtent Using a GCM-Based Seasonal Prediction System. Journal of Climate, 26, 6092-6104.

[7] Boer G.J.和Hamilton K.(2008)。QBO对温带预测能力的影响。气候动力学,31987-1000。

[8] ECMWF, Forecast Charts

[9] Météo-France, Seasonal forecast(公共网站,但需要身份认证)。

[10] Météo-France, Understanding: El Nino and La Nina

[11] Bader JC, Piedelievre JP, and Lamagat JP (2006). Seasonal forecast of the Senegal River flood volume: use of the results ofthe ARPEGE Climat model. Hydrological Science Journal, 51:3, 406-417, DOI: 10.1623/hysj.51.3.406

[12] Eurobrisa; A EURO-BRazilian Initiative for improving South American seasonal forecasts.

[13] Bruno Soares M and Dessai, S. (2016). Barriers and enablers to the use of seasonal climate forecasts amongst organisationsin Europe. Climatic Change, 1-2, 89-103. DOI: 10.1007/s10584

[14] Channel N, (2014). Application of seasonal forecasting to agriculture: assessment at the scale of France. Thesis from the University Paul Sabatier. Toulouse

[15] inla S, Ceron JP, Martin E, Regimbeau F, Déqué M, Habets F and Vidal JP (2012). Predictability of soil moisture and river ows over France for the spring season. Hydrology and Earth System Sciences, 16, 201-216.

[16] Euporias. European Provision Of Regional Impacts Assessments on Seasonal and Decadal Timescales.

[17] Batté L. and Doblas-Reyes F.J. (2015) Stochastic atmospheric perturbations in the EC-Earth3 earth system model: impact of SPPT on seasonal forecast quality. Climate Dynamics, 45, 3419-3439.


译者:王佳豪          审校:张文霞          责任编辑:胡玉娇


环境百科全书由环境和能源百科全书协会出版 (www.a3e.fr),该协会与格勒诺布尔阿尔卑斯大学和格勒诺布尔INP有合同关系,并由法国科学院赞助。

引用这篇文章: DEQUE Michel (2022), 季节预测, 环境百科全书,[在线ISSN 2555-0950]网址: https://www.encyclopedie-environnement.org/zh/air-zh/seasonal-forecast/.

环境百科全书中的文章是根据知识共享BY-NC-SA许可条款提供的,该许可授权复制的条件是:引用来源,不作商业使用,共享相同的初始条件,并且在每次重复使用或分发时复制知识共享BY-NC-SA许可声明。