工程师眼中的土

  由于地球土壤的多样性,具有专业知识的工程师应当与其他领域的专家一起开展土木工程项目。这位专家强调了需要考虑的土体特性,并通过适当的测试对其进行表征,以确保土木工程结构的基础在足够稳定的同时兼具一定的安全储备。值得注意的是,他提供了一个能够模拟结构使用寿命期间内土体和结构间相互作用的工具。此外,对周围场地的勘测能够记录建筑物整个生命周期中基础的状况和可能产生的位移。如今,我们通过对土体的改良和加固,可以在任何曾经被认为不适合的区域建造超大型构筑物。在当前建筑方法的指导下,建设工程对城市地区的破坏越来越小,这使得我们可以将工程建设的极限延伸至想象范围之外。

1. 为什么土备受关注

环境百科全书-工程师眼中的土-海上风力涡轮机
图1 海上风力涡轮机5兆瓦,水面下深达30米,顶部高出水面110米,左图基座直径30米,坐落在坚硬的岩质土上(花岗岩);右图表示在软弱岩质土层中,打入/钻入直径6米的单桩
[来源:皮埃奇(A. Puech),2008,海洋岩土工程课程,ENSHMG]

  让我们先来谈谈建筑:所有的主要地面结构(大坝、桥梁、高架桥、高层塔楼、筒仓、石油和化学品仓库、发电厂……)都需要地基。对于地下结构而言(隧道、地下巷道、地下工厂、储气罐……),它们必须承受来自地面的作用(通常称为压力)。最后,受海洋因素影响的海上构筑物的稳定性也是基于其所在海床上的支撑作用(重力式结构,图 1)或是构筑物与海床的锚固(浮动结构,导管架,图 2;或单桩,图 1,石油管道)。

  然而,土壤是一种“有生命的”的物质,会在各种自然和人为的影响下,随着时间的推移而变化,这些变化有些是可以被我们预知的,而有些则是出乎我们意料的。因此,我们还必须对与结构接触的土体进行加固处理,以及对可能发生的破坏进行补救。

环境百科全书-工程师眼中的土-海上平台支撑护套组件
图2 左图是安置在水深达300米的海上平台支撑护套组件之一,其尺寸和重量与埃菲尔铁塔相当;右图是配置有原位拖曳功能浮力箱的支架;桩的套筒(直径2米,长度50-100米)固定在沙质海床。
[来源:皮埃奇(A. Puech),2008,海洋岩土工程课程,ENSHMG]

  一名专业的工程师(岩土工程师,通常是一个岩土工程师团队)主要负责解决土壤和构筑物之间相互作用(土-结构共同作用)的问题。这也决定了他与负责项目本身的团队有着密切的联系。为了方便起见,在本文的以下部分中我们将使用“工程师”一词来指代岩土工程师。

  当提出建造一个理论上可行的大型土木工程结构的想法时,初级设计阶段的部分工作便在于仔细核算构筑物可能承受的环境影响及其对周边环境的改造。因此,工程师们必须要查阅当地有关自然现象(雨、雪、干旱、洪水、风暴、冻融、地震、爆炸等)的年鉴。这些自然现象可能会随着时间的推移导致构筑物变形和影响其稳定性。然而,更加全面的影响研究(如物理、水力、生态、社会经济等)对于评估工程对附近及远距离环境的影响也是至关重要的。此时,个体利益和整体利益间经常存在冲突。例如,阿斯旺大坝的建成彻底改变了埃及的农业条件:对尼罗河上游的农业影响是有利的(灌溉),但对尼罗河下游农业的影响则是灾难性的(土地盐碱化,每年肥沃冲积物的缺乏)。

  因此,如果建设方案没有根本性的错误,我们就将进入项目阶段(包括结构的精确设计及其与地面相互作用的分析)。

环境百科全书-工程师眼中的土-Grand-Maison土石坝
图3 左图是位于阿尔卑斯山脉奥勒河上的Grand-Maison土石坝,于1988年投入使用,是世界上最大的水坝之一,高140米,坝宽550米。剖面图中显示的芯层(粘土质防水层)和河床中的防水帷幕起到了防水作用。这些防水设施外加上下游土石堆填,确保了坝体的稳定性。右图是大坝和水库的照片。该大坝是一个污水处理厂(抽水蓄能电站,装机容量1820兆瓦,年发电量300千兆瓦时)的上部,可以在非高峰时段将未使用的电能以水力的形式储存起来。
[来源:左,法国大坝和水库委员会,2012,大坝技术];[右,杜歇昆汀(Douchet Quentin)GFDL(http://www.gnu.org/copyleft/fdl.html)或CC BY-SA 3.0(http://creativecommons.org/licenses/by-sa/3.0)]通过维基共享。(图1左:coupe transversale横截面,plate forme aval下游平台,rembial de pied aval下游堤防,drain exutoire引流管排水,recharge aval en éboulis下游充填碎石,parement en enrochements抛石壁板,altuvions冲积层,moraine底碛,drain incline排水坡度,galerie sous fluviale河道下廊道,voile de drainage排水罩,voiles d’injection喷射帆,630m environ约630米,CRISTALLIN: gneiss结晶状:片麻岩,retenue normale: 1695 NGF正常保留1695 NGF,filter fin过滤结束,zone principale en enrochements主要填岩区,protection en enrochements choisis在选定的岩石中进行保护,niveau inimal of exploitation normale:1951最低正常运行水平:1951,batardeau amont: 1575上游码头:1575,decharge amout垃圾填埋体积,zone intermediaire en eboulis中间碎石区,galerie d’injections et de controic注射和控制回廊,contact lias/cristallin接触束/晶状)

  我们所提到的术语“土”,是指位于植物层和/或陆地有机层之下的土壤和岩石。它们是天然材料,从矿物学、粒径、可能的胶结作用以及形成的整个历史来看,都各不相同。然而,根据属性的相似性可以将它们划分为砾石、砂、粉砂、粘土、硬度及构造程度差异显著的岩石。水几乎总是存在于这些土体当中,它们使土体饱和(在地下水位以下),或随空气一同赋存于(非饱和土)地下水位之上。在土石坝中(图 3),工程材料是根据所处区域仔细挑选的。

2. 土的重要特性及其表征

  在工程项目中,工程师最重要的工具就是力学。因此,他们格外关注土的力学和水力学特性,即土的刚度(弹性模量)、强度(内聚力(黏聚力)和摩擦力)、膨胀或收缩时的破裂倾向、渗透性和水合/脱水反应。这些特性的各向异性通常也应当给予考虑。土壤孔隙压力的存在要求工程师们同时考虑土的总应力和有效应力,后者是由土骨架实际承受的应力。

环境百科全书-工程师眼中的土-采用三轴试验测试深层土体的刚度和强度
图4 采用三轴试验测试深层土体的刚度和强度。左图为测试原理(未显示计量)。右图是三轴腔室的照片。圆柱形试样在受约束应力p(模拟深度)的条件下进行压缩(轴向力F代表临近结构的作用),从发生小变形直至破坏。
[来源:马可波罗(Marc Boulon)](Compression verticale纵向压缩,Pierre poreuse多孔岩体,Membrane élastique étanche防水弹性膜,Pression p de cellule autour de l’échantillon样品所受围压p,Cellule sous pression p压力仓,Echantillon de sol岩土样品,Drainage ou mesure de pression interstitielle排水或孔隙压力测量)

  陆地建筑的初步设计需要对现场的土进行鉴定,即岩土勘测。工程师首先要从地质学家那里获取自己的第一手资料,以及以往邻近建筑的文件(如果可以得到的话),最后工程师必须进行钻孔/岩心取样(用于实验室测试:图 4 三轴试验, 直剪试验、固结试验等)或原位测试(透度计、旁压仪、震波折射等)。

  实验室测试能够直接提供土体的水力学数据。另一方面,原位测试则只能通过与水力学参数的相关性来解释,因此具有一定的不确定性。水深测量、透度计测试和旁压仪测试可以提供土体的局部信息(垂直方向),而良好的地震波测试则可以提供关于土体质量的信息,能够反映土体的不均匀性。此外,还有许多其他技术也可以用来获取地下土层的特征:电导率测试、重力测量、雷达探测,这些技术也有助于探测地下孔洞和断层、裂缝等不连续现象。

3. 土工分析工具设计

  通常,我们会谈论工程中的建筑(桥梁、大坝、电站等),以及能够支撑甚至成为建筑一部分的地面(例如土坝)。在建筑的整个使用周期中,-结构共同作用是永久性的。

  根据现场土的特性(§2),工程师评估地面现有结构的现状和附加荷载。然后,通过设置一个或多个安全系数来确定工程和结构的尺寸,这些安全系数是通过增加荷载或降低土体强度的方式来估算破坏情况而获得的。在同时考虑历史上曾发生过的破坏事件和工程事故,基于适当的记录和考虑从而制定并完善的国家和国际标准(包括欧洲标准、欧洲土壤标准 7)能够对建筑的安全性进行评估。但是,在任何形式的破坏发生之前,土体和建筑的实际变形也会影响建筑的“健康”。

环境百科全书-工程师眼中的土-两种结构的有限元网格划分
图5 两种结构的有限元网格划分。左图是一个大坝(非常简化)和它的山谷。右图是一个发电站及其附近的区域。该方法将构筑物划分为大量小体积且拥有其各自刚度和强度的单元,并确保这些单元间的受力和变形是相互平衡的。
[来源:MESTAT, P., (1997),有限元网格, 建议和推荐, BLPC 212, 39-64]

  工程师可以使用各种工具,通过传统或更先进的方法对建筑和周围地区的情况进行建模。值得注意的是,获益于专业人员和研究人员之间的交流,这些方法不断被改进。传统方法主要以安全为导向。他们假设土体是一种刚性材料,也就是说,其在突然破裂之前不会发生变形。较新的数值方法(特别是有限元方法, 图 5)提供完整的土的本构关系,反映土体变形直至破裂,以及破裂本身的状态。这些本构模型提供了对处于使用过程中的建筑和地面(通常是大坝及其附近的山谷)进行安全评估和变形情况预测的途径。如今,传统方法和现代方法在这个行业中共存。

  我们刚刚提到的数值建模(有限元)对于工程师来说是一个很好的预测工具。但只有在能提供具有代表性的流体力学参数情况下,其预测结果才能令人满意。然而,由于地基的非均质性,在项目过程中,土壤的初始特征(§4)总是近似的。例如,从事隧道或巷道挖掘工作的矿工会告诉你,只有在实际开挖的时候才能真正知道地下是什么样的。这就给了有限元数值模拟可以发挥作用的空间。我们对工程的各阶段(连续的施工阶段)进行了模拟,并将结果与工程期间的现场监测结果进行比较,并从开始阶段起(在未开挖的场地),对土体的水力学变量(位移、应力、孔隙压力等)进行修正。这为反演分析提供了基础,允许在施工过程中对岩土工程参数进行修正。这使得构筑物在使用和特殊载荷下的表现得到了更真实的明确模拟。这种所谓的实地观测方法也可让我们重新审视最初的项目设计,以防当初过于大胆而使项目不符合安全标准。

4. 建筑和土体的诊断

  前面已经提及了伴随建设过程的一些措施,包括用于地面的和用于建筑本身的措施(§3)。但是,建筑及其周围区域在竣工后的使用期限会很长。对于大型工程,以及正在进行的和已确定的风险情况(滑坡、岩崩等),通常会对现场流体力学变量进行程序化测量,从而构成诊断。。这种方法需要快速解读和实时传播才能发挥最大的价值。因此,滑坡发生时,在荷载不变的情况下发生加速移动意味着土体正在快速趋于突然破裂,此时应该向受威胁人口发出预警。最常见的工程诊断对象(及其所在区域)包括大坝(及其形成山谷的斜坡)、水电站、桥梁及高架桥(不均匀沉降问题)、隧道和地下巷道(由于结构穿过的断层运动或周围岩性的改变,确保了其计算结果有限的收敛)。在诊断过程中涉及到的设备有引伸计、倾斜仪、沉降仪、孔隙压力和地下水位传感器、地形测量工具等。

  在过去(以世纪为单位),工程师可以使用粗糙的测量仪器进行测量(利用经纬仪测量位移,用水准仪测量倾斜等)。这些粗测的方法现在已经慢慢被淘汰, 这也证明了现在我们的测量技术日渐精细和有效。新技术在岩土工程中占有了重要的地位。如今,地表位移可以通过 GPS 进行快速、自动、准确的测量。延伸测量和倾斜测量则可以使用光纤实现。在隧道或巷道中,所有的引导和收敛测量都是基于激光技术实现的。无人机和图像分析技术也被用于监测大型边坡(大坝、桥梁等)的状态。此外,还有许多其他新技术也有望在未来的诊断工具中得到应用。

5. 土体的改良与加固

环境百科全书-工程师眼中的土-由“加筋土墙”制成的高挡土墙
图6 由“加筋土墙”制成的高挡土墙。每一层墙都由连接的钢筋混凝土“鳞片”组成,这些“鳞片”通过金属杆在上游路堤上的摩擦进行锚定。在挡土墙建设完成后再进行回填。这项技术使得建设过程中的美观、稳定、近垂直的排水墙要求成为可能。
[来源:卢卡斯(E. Lucas), 谢雷(P. Sery),(提古利特)A. Tigoulet, (布朗卡)D. Brancaz, 2008,最近的高加固土结构,JNGG 2008,南特]

  我们可以通过预防性加固对建筑以下或邻近地区土体的预期变形及非预期变形进行矫正。预防性加固的方法有很多,我们就以压实为例,这是一种通过滚轮振动或施加动荷载(利用重物击实,地面震动击实)方式对地面进行的加固处理。对于细颗粒含量高的含水土体,加固操作则是在排水、电渗透系统或是不透水表面膜下利用大气压力形成的真空条件下进行。在这个过程中,工程师必须始终保持耐心!用土工布微桩、土钉进行加固是很常见的。特别是在钻孔过程中使用密封钢筋,无论是被动的还是主动的(密封后张拉),都被广泛用于稳定岩石边坡和敏感的隧道围岩。在公路和高速公路沿线经常会遇到加固路堤(图 6)。

环境百科全书-工程师眼中的土-里昂-安提里翁斜拉桥
图7 由钢筋混凝土和钢制成的里昂-安提里翁斜拉桥于2004年投入使用,该桥横跨希腊地震非常活跃的佩特拉海峡,距离水面65米,其海床主要由软粘土厚层组成。桥全长2883米,以4个直径90米、墩间最大跨度560米的桥墩为基础,并结合了预防措施。桥墩下的粘土由30米长的金属桩进行加固,从而防止了土墩组件的旋转。这些金属桩上有一个易熔颗粒层(玄武岩块),能够允许在大地震时桥墩发生相对的水平位移(不可逆滑动)。左图是高架桥的景象。右图是地基土体的改良原理。
[左,来源:大卫毛尼克斯(David Monniaux)(自己的作品)[GFDL(http://www.gnu.org/copyleft/fdl.html),CC- By -sa -3.0 (http://creativecommons.org/licenses/by-sa/3.0/)或CC- By -sa 2.0 en (http://creativecommons.org/licenses/by-sa/2.0/fr/deed.en)],通过维基共享。[右,马可波罗(Marc Boulon)](65 m 65米,pile 地桩,blocs de basalte玄武岩块,pieux桩,substrat argileux泥质基质)

  随着时间的推移,无论是否经过规划,对地面变形进行补救的措施都非常常见。为了矫正桥墩之间的沉降差异,需要定期将桥面吊起进行检查。人们还会在埃菲尔铁塔的地基和塔脚之间放置圆柱。墨西哥市中心是一个对地震非常敏感的粘土地区,大型建筑都建在顶部有圆柱体的桩上,以便在每次大地震后纠正建筑的坡度。此外,瑞恩安提瑞恩(Rion Antirion)的斜拉桥(图 7)也被设计成能够承受地震荷载。

  在世界上,缓解差异沉降问题最常用的技术是在过度沉降的基础区域下方注入水泥灌浆。但最近又出现了另一种原创技术。比萨斜塔和墨西哥城大教堂建在一层厚厚的黏土之上,令人担忧是它们的倾斜程度还在不断增加。该问题在一定程度上是通过在最高的地基下进行地下开挖或粘土提取来进行处理的。这样做的目的并不是为了将这些建筑复原如初,而只是为了保持它们的倾斜度(既要确保建筑的安全还不能影响到建筑的旅游收入等)。

6. 发展前沿与趋势

环境百科全书-工程师眼中的土-典型盾构机
图8 隧道掘进机。隧道掘进机根据其所穿过的岩土情况分为几种类型:土压平衡式、泥浆支护式、压缩空气支护式等。施加压力的目的是为了稳定工作面。它们是真正的基于轨道的工厂,非常强大。基本的主要部件依次为:切割轮、将碎片输送到后方的传送带、如果地面松动时的防护罩、推动轮上的反力筒、锥形排气裙、节流阀(预制)、储运车。如果有污泥压力,外面则还设有一个污泥处理站。
[来源:photopqr / le progress / philippon joel]

  在一般情况下,非开挖工程比土方工程更受欢迎,因为非开挖工程通常不会对居民造成影响。从小直径到大直径,我们都可以定向钻井,例如,如果土体条件合适,我们可以在路堤、公路、铁路甚至河流下安装非直线(公制直径) 管道。这时,微型隧道机能为挖掘公制巷道提供一个有趣的视角。最后,十米制尺寸的隧道掘进机(图 8),即使是在非常软的(沙、粘土),饱和的(英吉利海峡隧道),非常浅的(楔石距离地面不到 10 米)或非常深的(瑞士圣哥达隧道,里昂-都灵铁路隧道项目,最大可覆盖 2500  米深的岩石和水!)的地方都可以用于建造隧道。所有这些新工具都是能源密集型的!

  桩(钻孔桩或压入桩)是软土地基的首选地基处理方法。通常桩的直径可达几米,在海上工程中则可达 100 米。因为循环软化现象的存在,针对循环载荷的研究一直十分活跃。只要条件允许,桩基础承受荷载的能力可以没有上限,但结构本身性质的变化会限制这种能力的增长。例如,工程师会优先考虑自稳定斜拉桥和高架桥(米洛,里昂-安提里翁)而不是悬索桥。

  目前,我们正在陆地上试验具有作为地基和热交换器双重功能的地热桩和构筑物。

  许多其他的创新即将到来,并为我们开启一个全新的时代……


参考资料及说明

封面照片:大房子大坝,杜歇昆汀(Douchet Quentin)[GFDL or CC BY-SA 3.0],通过维基共享。


环境百科全书由环境和能源百科全书协会出版 (www.a3e.fr),该协会与格勒诺布尔阿尔卑斯大学和格勒诺布尔INP有合同关系,并由法国科学院赞助。

引用这篇文章: BOULON Marc (2024年3月14日), 工程师眼中的土, 环境百科全书,咨询于 2024年9月15日 [在线ISSN 2555-0950]网址: https://www.encyclopedie-environnement.org/zh/sol-zh/soils-for-engineer/.

环境百科全书中的文章是根据知识共享BY-NC-SA许可条款提供的,该许可授权复制的条件是:引用来源,不作商业使用,共享相同的初始条件,并且在每次重复使用或分发时复制知识共享BY-NC-SA许可声明。

Soils for engineers

The very diverse soils on our planet require the expertise of specialized engineers to carry out civil engineering projects, in conjunction with other specialists. This specialist highlights the soil properties to be taken into account and characterizes them with appropriate tests, so that the foundations of civil engineering structures are sufficiently stable, with a safety reserve. Particular attention is paid to design tools for modelling the soil-structure interaction during the life of a structure. The inspection of the surrounding site provides a permanent record of the condition and possible movements of the supporting soil of a building throughout its life. Today, at the cost of soil improvement and reinforcement work, very large structures can be built in areas that were once considered unsuitable for any particular location. Current construction methods, which are less and less disruptive in urban areas in particular, make it possible to push the limits of what is possible beyond what was once imaginable.

1. Why soils require attention

Encyclopedie environnement - sols ingenieur - eolienne off shore 5mw - offshore wind turbines
Figure 1. Offshore wind turbines 5 MW, seabed at 30 m, 110 m off water, 110 m emerged, on the left weight base of diameter 30 m, on hard rocky soils (granite); on the right foundation on driven and/or drilled monopile of diameter 6 m, on soft rocky soils (chalk). [Source: A. Puech, 2008, Marine Geotechnical Engineering Course, ENSHMG]
Let’s talk about construction first: All major land-based structures (dams, bridges, viaducts, high-rise towers, silos, petroleum and chemical reservoirs, power generation plants,…) require foundations. As for underground structures (tunnels, galleries, underground factories, gas storage tanks,…) they must support the action (commonly known as pressure) of the ground. Finally, offshore structures, which are subject to marine elements, draw their stability from their support on the seabed (weight structures, figure 1) or from their anchorage on the seabed (floating structures, jackets, figure 2, or monopiles, figure 1, oil pipelines).

Encyclopedie environnement - sols ingenieur - jacket support plateforme offshore
Figure 2. On the left, one of the jackets elements supporting an offshore platform, up to 300 m of water, size and weight comparable to those of the Eiffel Tower. On the right, jacket equipped with flotation ballasts towed on site; pile (diameter 2 m, length 50 to 100 m) guide sleeves for nailing on the sandy seabed. [Source: A. Puech, 2008, Cours de géotechnique marine, ENSHMG]
But soil is a “living” material, likely to evolve over time under the influence of various natural and anthropogenic phenomena, both planned and unexpected. We will therefore also have to deal with soil reinforcement in contact with the structure, and/or remediation of any disorders that may occur.

A specialized engineer (the geotechnical engineer and more often a team of geotechnicians) is in charge of the interaction between soil and structure (soil-structure interaction). He is of course in close contact with the team responsible for the work itself. In the rest of this text on soils, we will use the term engineer to refer to the geotechnical engineer.

When the idea of a major civil engineering structure, useful in principle, comes up, part of the preliminary project consists in closely examining the entire environment it will undergo and modify. We must therefore consult the annals of local natural phenomena likely to affect the deformations and stability of the construction over time (rain, snow, drought, flood, storm, freeze-thaw, earthquake, explosion,…). But a broad impact study (physical, hydraulic, ecological, socio-economic,…) is also essential to assess the repercussions of the structure on the nearby and distant site. The interests of individuals and the general interest are often in conflict. For example, the installation of the Aswan dams has completely changed the conditions of agriculture in Egypt: beneficial effects in the Upper Nile Valley (irrigation), but disastrous on the Lower Valley (salinization of land, lack of fertile annual alluvium).

So, if there is nothing fundamentally wrong with construction, we enter the project phase (the precise design of the structure and its interaction with the ground).

Encyclopedie environnement - sols ingenieur - barrage Grand'Maison
Figure 3. The Grand-Maison earth and rockfill dam on Eau d’Olle river in the Alps, commissioned in 1988. One of the world’s largest dams, 140 m high, 550 m long at the top. Above section showing the core (clayey waterproofing), the waterproofing curtain in the river bed, completing the waterproofing, the rockfill refills, upstream and downstream, ensuring stability. On the right, photo of the dam and reservoir, seen from below. This dam is the upper part of a WWTP (pumped energy transfer station, 1820 MW, 300 Gwh/year), which allows the unused electrical energy to be stored in hydraulic form during off-peak hours. [Left, source: Comité français des barrages et réservoirs, 2012, Technologie des barrages] ; [Right, Douchet Quentin, source : GFDL (http://www.gnu.org/copyleft/fdl.html) or CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons
Under the term soils, we mean soils and rocks, located under the vegetable and/or organic terrestrial layer. They are all natural materials, all different from each other, by their mineralogy, their granulometry, their possible cementation, and finally by the whole history of their formation. However, they are grouped into large classes with neighbouring properties, gravel, sand, silts, clays, more or less hard, more or less tectonized rocks. Water is almost always present, saturating the soil (under the roof of the water table), or accompanied by air (unsaturated soil) above the water table. In an earth dam (Figure 3) the materials are carefully selected according to the areas.

2. Important soil properties and their characterization

The essential tool of the soil engineer in charge of a civil engineering project is mechanics. Therefore, its most examined properties are its mechanical and hydraulic properties, namely its rigidity (modulus of elasticity), its strength (cohesion and friction), its dilating or contracting tendency to rupture, its permeability, and its reaction to hydration/dehydration. The anisotropy of these properties is always considered. The pore pressure in a soil leads the engineer to consider the total stresses and the effective stresses, the latter being those actually supported by the soil skeleton.

Encyclopedie environnement - sols ingenieur - cellule triaxiale - deep soil - soils
Figure 4. The triaxial test is used to characterize the rigidity and strength of a deep soil. On the left, the principle of the test (metrology not shown). On the right, picture of a triaxial cell. The cylindrical sample is subjected to a confinement stress p (simulating depth), then compressed (axial force F representing the action of a nearby structure), from small deformations to failure. [© Marc Boulon]
A preliminary project for a structure built on/on the ground requires the identification of the local soil. We are talking about soil investigation. The engineer will first obtain his first information from the geologists, complete it with the files – if they are accessible – of previous neighbouring constructions, and must finally order either boreholes / cores (for laboratory tests – triaxial, figure 4, direct shear, oedometer,... -, or in situ tests (penetrometer, pressuremeter, seismic refraction,…).

Laboratory tests directly provide hydro-mechanical data. On the other hand, in situ tests can only be interpreted by correlations with hydro-mechanical parameters, with a certain uncertainty. Soundings, penetrometer tests, pressuremeter tests provide local information (according to a vertical), while well-conducted seismic tests provide information about the ground in its mass, highlighting its heterogeneities. Many other techniques are available to characterize the subsoil layers: electrical conductivity, gravimetry, radar, which also help to detect cavities and discontinuities – faults, fractures –.

3. Design tools for soil

Classically, we talk about the structure in project (the bridge, the dam, the power plant,…), and the ground that must support it or even constitute it (earth dam, for example). During the life of the structure, the soil-structure interaction is permanent.

Equipped with the characteristics of the local soil (§ 2), the engineer evaluates the service and exceptional loads of the structure on the ground. Then the project is defined and the structure is completely dimensioned by ensuring one or more safety factors, obtained by estimating failure scenarios by increasing the loads or by reducing the soil characteristics. National and international standards (including Eurocodes, Eurocode 7 for soils) have been developed and gradually refined to assess safety, taking into account duly recorded and meditated historical disorders and accidents. But the actual deformations of the ground and the structure, before any failure, are also relevant in terms of the health of the structure.

Encyclopedie environnement - sols ingenieur - maillage barrage et centrale
Figure 5. Meshing of 2 structures in finite elements. On the left, a dam (very simplified) and its valley. On the right is a power station and its nearby site. The method consists in writing the mutual equilibrium and deformations of a large number of small volume elements, each made of materials with their own rigidity and strength. [Source: MESTAT, P., (1997), Finite element meshes, advice and recommendations, BLPC 212, 39-64]
The engineer has tools at his disposal to model how works a structure and the surrounding site, using conventional or more advanced methods. It should be noted that these methods are constantly being improved, thanks to the dialogue between professionals and researchers. Traditional methods are mainly oriented towards safety. They assume the plastic rigid ground, i.e. not deforming before it breaks up suddenly. More recent numerical methods (in particular the finite element method, Figure 5) provide the soil with complete constitutive laws that reflect deformations up to rupture, and the rupture itself. They provide access to both the safety assessment and the deformations of the structure in service and the ground (typically a dam and its nearby valley). Today, classical and recent methods coexist in the profession.

We have just mentioned numerical modelling (finite elements) as a good predictive tool for the engineer. But the prediction can only be satisfactory if the hydro-mechanical data that feed it are representative. However, the initial characterisation of the soils (§ 4), at the time of the project, is always approximate, simply because of the heterogeneity of the subsoil. For example, miners digging a tunnel or a gallery tell you that they really only know the ground they are crossing when they excavate it, when they are driving it. This is where the power of finite element numerical modelling can be harnessed. The phasing of the work (the successive stages of construction) is simulated, the results of which are compared with on-site measurements during this work, from the beginning (the virgin site), of the modifications of the hydro-mechanical variables of the soil (displacements, stresses, interstitial pressures,…). This provides the basis for an inverse analysis, allowing the soil project parameters to be corrected as the construction progresses. This results in a more realistic definitive simulation of the structure’s behaviour in service and under exceptional loading. This so-called observational methods also make it possible to rethink the initial project, in case it has been too bold, to the point of no longer meeting the safety criteria.

4. The auscultation of structures and soils

The measures accompanying the construction of the structure, on the ground and on the structure itself, have just been mentioned (§ 3). But a structure and its site have a very long life, after construction. For large structures, as well as for ongoing and identified risk situations (landslides, rockfalls,…), programmed measurements of site hydro-mechanical variables are common, constituting the auscultation. To be useful, this approach requires rapid interpretation and dissemination in real time. Thus, on a landslide, an acceleration of movements without modification of loads means a rapid evolution towards sudden rupture, and must trigger the alert of threatened populations. The structures (and their sites) commonly ausculted are dams (and the slopes of their valleys), power plants, bridges and viaducts (for which differential settlements are feared), tunnels and galleries (for which limited convergence is ensured, resulting from the movement of the faults crossed, or from the alteration of the surrounding rock. The devices installed are extensometers, inclinometers, settlement, pore pressure and groundwater level sensors, topographic survey tools,..

In the past (on the scale of the century(s)), the engineer had at his disposal rough measuring instruments (theodolite for displacements, level for inclinations,…). We are nowhere near these proven measurement technologies. New technologies have a prominent place in geotechnical engineering. Today, topographic movement measurements are carried out quickly, automatically and precisely using GPS. Extensometric and inclinometric measurements use optical fibre. In tunnels or galleries, all guidance and convergence measurements are based on laser techniques. UAVs and image analysis techniques are used to monitor the condition of large facings (dams, bridges, etc.). And many other new technologies are expected to be included in the panel of auscultation tools.

5. Soil improvement and reinforcement

Encyclopedie environnement - sols ingenieur - mur de soutènement en terre armée
Figure 6. A high retaining wall made of “reinforced earth wall”. Each wall level consists of joined reinforced concrete “scales” anchored by friction in the upstream embankment by means of metal rods. The backfill is built as the wall is erected. This technique makes it possible to create aesthetic, stable, sub-vertical and draining walls. [Source: E. Lucas, P. Sery, A. Tigoulet, D. Brancaz, 2008, Les ouvrages récents de grande hauteur en sol renforcé, Compte rendus JNGG 2008, Nantes]
Soil can be reinforced preventively, or deformations, expected or not, can be corrected under or in the vicinity of a structure. There are many methods for preventive improvement. Let us quote the compaction, which is a hardening of the ground, practiced by rollers possibly vibrating, or by dynamic action (falling of heavy masses on the ground, explosions at ground level). In the case of very fine waterlogged soils, drainage and consolidation are chosen, by laying drains, or an electro-osmosis system, or by using atmospheric pressure by vacuum under a waterproof surface membrane. But the geotechnician must always be patient! Reinforcement by geotextile sheets, micropiles, nailing, is very common. In particular, nailing, using steel bars sealed in a borehole, passive or active (tensioning after sealing), is widely used to stabilize rock slopes and suspicious tunnel walls. Along roads and highways, armed embankments are often found (Figure 6).

Encyclopedie environnement - sols ingenieur - viaduc haubans rion antirion
Figure 7. The Rion-Antirion cable-stayed viaduct, made of reinforced concrete and steel, put into service in 2004, crosses the Strait of Patras in Greece, very seismic, by 65 m of water, whose seabed consists of a thick layer mainly clayey and soft. 2883 m long, based on 4 piers with a diameter of 90 m and a maximum span between piles of 560 m, it combines preventive measures. The clay under the piers is reinforced by a 30 m long forest of metal piles, which prevents a rotation of the soil-pier assembly. These piles are surmounted by a fusible granular layer (basalt blocks), allowing relative horizontal displacement (irreversible sliding) of piers during major earthquakes. On the left, view of the viaduct. On the right, the principle of improving the foundation soil. [Left, source: By David Monniaux (Own work)[GFDL (http://www.gnu.org/copyleft/fdl.html), CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/) or CC BY-SA 2.0 en (http://creativecommons.org/licenses/by-sa/2.0/fr/deed.en)], via Wikimedia Commons. [Right, © Marc Boulon]
Remediation of ground movements over time, programmed or not, is common. To correct differential settlement between bridge piers, the deck is periodically lifted. Cylinders have been placed between the foundations and the feet of the Eiffel Tower. In the centre of Mexico City, a clayey area very sensitive to earthquakes, large buildings are built on piles topped by cylinders in order to correct the slope of the building following each major earthquake. The Rion Antirion cable-stayed viaduct (Figure 7) is also designed to withstand earthquakes.

The most widely used technique worldwide to compensate for differential settlement is the injection of cement grout under foundation areas with excess settlement. But another original technique has recently developed. The worrying and increasing inclination of the Tower of Pisa and Mexico City Cathedral, built on a thick layer of clay, has been treated, in part, by under-excavation, or clay extraction under the highest foundation area. The recovery of these buildings was not intended, but rather the stabilization of their inclination (in addition to technical prudence, the tourist manna must be protected…).

6. Current trends and performance

Encyclopedie environnement - sols ingenieur - tunnelier
Figure 8. Example of a tunnel boring machine. Tunnelling machines are of several types depending on the ground they cross, at earth pressure, sludge pressure, air pressure. The pressure is intended to stabilize the slaughter front. They are real rail-based factories, extremely powerful. The main parts are essentially, in order: the cutting wheel, the conveyor belt for the rear excavated material, a shield if the ground is soft, push reaction cylinders on the wheel, the cone shaped exhaust skirt, the lining segment erector (prefabricated), storage wagons. Outside a sludge treatment plant if sludge pressure. [© PHOTOPQR/LE PROGRES/PHILIPPON JOEL]
Trenchless works are preferred to earthworks whenever possible, as they generally do not harm the population. From small to large diameters, there are directed boreholes, which allow, for example, the installation of a non-rectilinear pipe (decimetre diameter) under a backfill, road, railroad, or even under a river if the soil is suitable. Micro-tunnelers offer an interesting perspective for drilling metric galleries. Finally, tunnel boring machines (Figure 8), of decametric size, are used to build tunnels even in very soft (sand, clay), saturated (case of the Channel Tunnel), very shallow (keystone less than 10 m from the ground surface) or very deep (Gotthard Tunnel in Switzerland, Lyon-Turin rail tunnel project with a maximum coverage of 2500 m of rock – and water !-). All these new tools are energy intensive!

Piles are the preferred foundation methods in soft ground, drilled or driven, commonly reaching several metres in diameter and a hundred metres in length in offshore. Cyclic loads are actively studied due to the so-called cyclic degradation phenomenon. To the extent that the capacity of the foundations is almost unlimited, provided that the price is paid, the structures themselves change in nature. For example, self-stable cable-stayed bridges and viaducts (Millau, Rion-Antirion,…) take precedence over suspension bridges

Today, on land, we are experimenting with geothermal piles and structures, with a dual function, foundation and heat exchanger.

Many other innovations are to come, which will mobilize the new generations..

 


References and notes

Cover image. The Grand’Maison dam by Douchet Quentin[GFDL or CC BY-SA 3.0], via Wikimedia Commons


环境百科全书由环境和能源百科全书协会出版 (www.a3e.fr),该协会与格勒诺布尔阿尔卑斯大学和格勒诺布尔INP有合同关系,并由法国科学院赞助。

引用这篇文章: BOULON Marc (2019年5月13日), Soils for engineers, 环境百科全书,咨询于 2024年9月15日 [在线ISSN 2555-0950]网址: https://www.encyclopedie-environnement.org/en/soil/soils-for-engineer/.

环境百科全书中的文章是根据知识共享BY-NC-SA许可条款提供的,该许可授权复制的条件是:引用来源,不作商业使用,共享相同的初始条件,并且在每次重复使用或分发时复制知识共享BY-NC-SA许可声明。