La Clapière: is the largest French landslide still a major risk?

PDF

The La Clapière landslide (Alpes-Maritimes) involves 50 million m³. Identified around 1980, the phenomenon showed a gradual acceleration with marked seasonal modulations. After a peak in speed in 1987-88 that raised fears of a catastrophic rupture, and led to the excavation of a diversion tunnel for the river, a deceleration occurred, attributed to better drainage in the moving mass.

la clapiere france - glissement terrain
Figure 1. Situation of La Clapière (extract from the IGN map)

The La Clapière landslide is located in the Southern Alps (Figure 1), 80 km north of Nice. It developed on the left bank of the Tinée, a tributary of the Var, less than one kilometre downstream of the village of Saint-Étienne-de-Tinée. The landslide extends from the valley bottom, at an altitude of 1100 m, to 1760 m. The total area of the landslide is approximately 1.2 km² and its volume is estimated at around 50 million m3 (50 hm3). Forty years ago, boulder falls and road deformations attracted attention and a phenomenon of instability on the slope was detected. A monitoring of the movements was in place at the end of 1982, by distance measurements from the opposite side. In 1984 the road was temporarily diverted and then, in 1986, definitively on the right bank slope of the Tinée river.

A catastrophic break was expected in the late 1980s. To avoid the risk induced by a dam in the valley, a tunnel project was studied, following the visit of Minister H. Tazieff in 1988, and built in 1989-1991 under the right bank of the Tinée river. Zones prohibiting access to the foot of the slide and construction in the assumed spreading area have been defined. A contingency plan has been put in place. However, as early as 1988, a deceleration of the movement appeared, interrupted by a few seasonal peaks, and in 2019 it seems that the main mass stabilized, after a cumulative displacement of more than a hundred meters (see the animation Clapiere.avi).

1. An old phenomenon reactivated

la clapiere - glissement terran
Figure 2. Main areas of the La Clapière landslide (photo 2007) [Source: © J-L Durville]
The slope is marked by the footprint of the Tinée glacier that occupied the valley: steep slope at the base (about 40°), slope failure around hill 1600 m and softer slope above. The connecting groove of the Rabuons tributary borders the slide to the southeast (Figure 2). The slide has a crown divided into two lobes (Figure 2); its foot, at the valley bottom, gradually covered the road and the alluvium by pushing back the Tinée.

Annual rainfall averages 990 mm in Saint-Étienne-de-Tinée. The upper part of the slope, which rises to 3000 m, is covered with snow in winter and spring.

1.1. Geology

The La Clapière landslide is located on the southwestern edge of the Argentera-Mercantour massif, in contact with the sedimentary Triassic. It develops on a slope composed of metamorphic rocks of the Hercynian age, mainly gneiss, amphibolites and migmatites: the Annelle series, in which the 80 m thick Iglière formation can be individualized and composed of massive migmatites (Figure 3). The proportion of micas (biotite) is high in some levels of the Anelle series, promoting alteration.

vallee de tinee - coupe geologique vallee de tinee france
Figure 3. Geological section through the Tinée valley. Note the Iglière’s rocky bar and the incoming dip. According to Follacci et al., 1988, ref. [1]. [Source: © Felix Darve]
The main structural features are derived from the Hercynian and Alpine tectonic phases [1]. The Hercynian foliation is generally parallel to the Tinée valley, i. e. north-west/southeast, and its dip, at depth, is 60-80° towards the interior of the massif (Figure 3). In addition to metamorphic foliation, two discontinuity directions have a major role: N10-N20° and N60-N90°.

The presence of gypsum Triassic rocks at the foot of the slide, which would nowadays be masked by alluvial filling, remains a hypothesis, in the absence of boreholes.

After the glacial retreat, dated 13,000 years ago B.P. (Before Present: origin = + 1950) in the Tinée Valley, glacio-alluvial and alluvial formations filled the valley floor to a thickness of several decameters.

From a hydrogeological point of view, a two-layer model can be accepted: one, basal, connecting to the alluvial groundwater of the Tinée and impregnating the foot of the slide, and the other, perched in the decompressed zone of the gneisses (a few surface decameters), feeding the top of the slide and in particular the upper slide.

1.2. History of slope destabilization

la clapiere france - glissement terrain france
Figure 4. La Clapière in 1986. [Source: J-L Durville]
The dating by cosmonucleic acid of rocky escarpments on the slope, which would mark the first manifestations of destabilization, provides an age of 10,000 years B.P. or about 3000 years after deglaciation. The first ruptures corresponding to the current slip would date back to 3600 B.P. (-1650 years).

On the 1938 aerial photographs, a beginning of a high escarpment is visible, corresponding to the northwest lobe of the current landslide. In the 1950s, the two lobes formed a clean, high escarpment while the scree cone of La Clapière sensu stricto was enriched with many blocks.

Figure 5. Monthly speed graph (mm/d) of several targets. Tacheometry between 1982 and 2013. Note that the major peak of the main slide is late 1987. [Source: Document © P. Maurin]
It was around 1976 that the activity of the scree cone and the deformations of the road located at the foot of the slope alerted the authorities; following a visit by Jean Goguel to the site, a note from the Laboratoire des Ponts et Chaussées de Nice in 1977 questioned the existence of a movement involving a large part of the slope. Distance measurements confirmed the overall movement (Figure 4), with marked seasonal fluctuations in relation to rainfall or snowfall, and a clear trend towards acceleration (Figure 5).

la clapiere - glissement terrain france
Figure 6. La Clapière in 2016 A reactivation of the NW lobe is observed. [Source: © P. Maurin]
A new rupture under the northwest lobe developed in 1987, regularizing the upstream escarpment in an arc (Figure 2). During the winter of 1987-88, speeds of 10 cm/d were reached at some points (Figure 5). However, the movement then slowed rapidly.

A significant regression upstream of the Rabuons lobe occurred around 1989, accentuated in 1997, delimiting the upper slide (about 5 hm3), which gradually advanced over the main slide (Figure 2).

The slowdown, still marked by peaks during very wet periods, particularly in the upper landslide, has continued until today when movements are low (less than 20 cm per year in the main landslide since 2010 for most of the targets). Since the early 2010, significant displacements of the NW lobe have been observed, but without regression upstream.

After a cumulative displacement of 100 to 130 m, the slide is now subject to surface erosion, which degrades in particular the upstream escarpment (Figure 6).

2. A slip observed and measured from every angle

2.1. Distance measurements

A system of distance measurements by infra-red from the opposite side has been operational since 1983 [2]. The measurements were acquired by two distance meters, located 1 km apart, for several years, then by a single device. Between 30 and 50 targets are targeted in and around the slide.

Variations in humidity and air temperature in the valley disturb electromagnetic waves. To correct the resulting errors, measurements are taken each time on 3 or 4 fixed targets located on the periphery of the slide. For distances ranging from 600 to 1800 m, the accuracy is estimated at between 3 and 6 mm after correction.

In addition, geodetic measurements were carried out once a year to determine the 3D displacement vectors.

2.2. Digital Differential Terrain Models

The exploitation of two digital terrain models (DTMs) taken at different dates gives an assessment of the altitude variations Dz of the surface at a given point (x,y). Serratice [4] thus compares 1970 and 1997 DTMs from aerial photographs: the (apparent) swelling in the lower part of the slide and the (apparent) subsidence in the upper part are well highlighted (several decameters), but the volume balance shows a very small variation, less than 1%.

2.3. Terrestrial and satellite images

In addition to the classic multi-date photo-interpretation, which makes it possible to identify important evolutions in the slip [5], a quantitative exploitation of aerial photos has been carried out by different authors.

Delacourt et al [6], after rectifying the aerial photographs of 1983, 1991 and 1999, estimate the horizontal displacements of the various landslide sectors; in particular, between the two extreme dates, the Iglière’s bar increased by 160 m in the NNW section and by 120 m in the SSE; the foot advanced by 115 m.

The image correlation technique was used by Delacourt et al [6] with aerial photographs from 1995 and 1999. The authors obtain a map of the horizontal displacements between these two dates.

3. Kinematic and mechanical models

3.1. The ancient deformations

Figure 7. Diagram of the development of the rupture (after Follacci, 1999, ref. [2]). [Source: © Felix Darve]
The slope of La Clapière is made up of gneiss whose direction is parallel to that of the valley and whose foliation has a strong dip towards the inside of the slope. However, we observe that this dip gradually decreases as we approach the surface until it becomes horizontal, or even inverted, around the slipped area (Figure 3). This change in dip was explained either by a gravitational phenomenon – mowing: the banks would tip under the effect of gravity and the slope – or by a folding of tectonic origin, the two phenomena being able to combine.

The convex geometry of the slope, left by the glacier, is favourable to a destabilization of the lower part of the slope. The glacier was a foot stop and its melting caused an imbalance in the massif, as has often been observed in glacial valleys. However, destabilization seems to have started well after the melting of the Tinée glacier. A climatic factor and possibly a full-scale gypsum dissolution may have contributed to the initiation of ruptures.

Field observations and the interpretation of aerial photographs led Follacci [3] to a model of the development of the rupture, heterogeneous in time and space. The rupture first develops in the SE lobe, weakened by the nearby presence of the Rabuons valley. It then reaches the NW lobe, above Iglière’s bar and finally over the entire height (Figure 7).

It was only around 1990-1991 that the upper and lower speeds converged, indicating the transition to an overall rotational slip.

The image of a fracture surface developing as it gradually “smoothed”, as proposed by Follacci [2], can thus be retained (Figure 6). In addition, the Iglière’s bar, made of massive migmatite, was a reinforcement for the slope whose progressive rupture may have allowed the acceleration of the 1980s. It should be borne in mind that “roughness” on a sliding surface can typically have a height of 1 to 2% of its length in the direction of the slope, which represents here more than ten meters.

3.2. The recent sliding phase: a bit of mechanics

Considering the cumulative displacement, it can be assumed that after 1988 the pseudo-circular fracture surface formed. We do not have any boreholes in the slide but we can estimate the depth of the slide at about 90 m, using the dip of the vectors moving along the slope.

A backward analysis assuming a boundary equilibrium (without slick) leads to residual mechanical parameters: cohesion c‘r = 0 and friction angle φ’r = 32.5°.

The kinetic energy of the slip (½ MV²), during the 1987-8 crisis, was less than 1 Joule, but the daily potential energy loss was about 100 MJ. The enormous potential energy reserve is therefore consumed entirely in the form of deformation/rupture within the moving mass and heat along the sliding surfaces.

If we compare the morphology of the slope between 1970 and 1992 (100 m displacement, compared to a breaking length of 1000 m), the decrease in engine torque could explain, at least in part, the slowing after the 1987 peak. But a hydrogeological cause can also be invoked.

4. The importance of the hydrogeological factor

Figure 8. Speeds in mm per day of target 10 of the main landslide and flow of the Tinée River. We observe the good correlation of peaks, except in 87-88. [Source: CEREMA data, graph by J-L Durville]
Seasonal variations in speed were noticeable in the first years of measurements (Figure 8) and attempts to correlate speeds and precipitation (or Tinée flow) have increased, for scientific purposes such as monitoring and warning.

Given the complexity of hydrogeology in a rocky massif such as La Clapière, the coupling between the water supply P (rain or snow melt, even if the consideration of snow melt is probably imperfect) and the sliding speed V was simulated using different types of “black boxes” or grey boxes. To better reflect the P → V command, the process is divided into a hydrogeological part “P → H” and a mechanical part “H → V”. All models thus consider a pseudo-piezometric level H calculated as the difference between the water supply (precipitation P, or better infiltration I) and drainage. It is estimated H on day n+1 from H on day n and P on the previous days. The mechanical part of the models uses different laws that simply link speed or acceleration to height H.

All these models allow to obtain a good agreement between calculations and measurements by adjusting their parameters to the measurements, but this calibration must be renewed frequently. In addition, the models are unable to predict major changes in slope behaviour, particularly the 1987 peak speed. This seems to confirm that a significant change in hydro-mechanical behaviour has occurred. Similarly, in 2001 or 2013, the “jolts” observed (Figure 5) could be explained by temporary clogging.

This weakness of the models therefore makes it impossible to predict a catastrophic break by this type of method; however, the interest in making a forecast within a few days remains, as any discrepancy between the forecast and the measure may be an indication of a change in behaviour.

More generally, the sensitivity of the main slip to water inputs can be assessed by the ratio of annual displacement D to annual input P (Table 1). The reduction in D/P by a factor of 20 to 40 between 1986/1987 and after 2000 is remarkable.

Table 1. Cumulative displacement (m) and cumulative precipitation (m) over one year.

The evolution over time of the water control can be interpreted as resulting from a deformation/permeability coupling. Thus, the deceleration after the 1987-88 peak (Figure 7) would reflect a fairly rapid opening of discontinuities, facilitating drainage. It should be noted that the secondary peak in 1996-97 could correspond, conversely, to a temporary decrease in drainage capacity (sealing of fractures, etc.).

5. The propagation of a landslide

Figure 9. Collapsed cone: fall of 5 hm³ with a slope at 30°. [Source: according to Serratrice, 2006, ref. [4]]
The question of a possible clogging of the valley arose in the mid-1980s, during the acceleration of a movement that involved about 50 hm3. Several simulations of material propagation and spreading have been implemented, with different approaches: continuous viscous fluid medium, successive elementary volumes sliding with friction, without neglecting simple methods such as the cone method (Figure 9).

6. Messages to remember

  • In France, La Clapière was the first major slope movement to benefit from dense and precise monitoring instrumentation, with the Séchilienne (Isère) site being equipped a few years later.
  • While this instrumentation was mainly motivated by a concern for public safety, the scientific contribution was very rich, mainly in the analysis of hydrogeological control. It should also be mentioned that, in return, the reliability of operational monitoring is made more reliable thanks to advances in understanding phenomena.
  • The history of La Clapière is now almost over, with the truly active phase now giving way to a period of slow degradation by erosion – unless there is a significant upstream decline. The striking fact of this multi-millennial history is that there was no rapid catastrophic movement in the end, mobilizing several tens of millions of cubic meters, an event that seemed very likely in 1987.
  • The rather abrupt slowing of La Clapière at the end of 1987, and therefore the non-occurrence of a catastrophic landslide, are attributed to a change in hydrogeological conditions, the significant cumulative deformation having favoured a good drainage of the moving mass and at the same time reducing the influence of hydraulic pressures. To this cause, relating to the coupling between deformation and underground hydraulics, we can add the reduction of the engine torque due to the hectometric advance of the slipped mass, an advance that continues to this day, although very slow.

Notes and references

Cover photo. [Source: © J-L Durville]

[1] Follacci J.P., Guardia P. Ivladi J.P. (1988). Le glissement de La Clapière (Alpes-Maritimes) dans son cadre géodynamique. Symposium international sur les glissements de terrain, Lausanne.

[2] Follacci, J.-P. (1999). Seize ans de surveillance du glissement de La Clapière (Alpes-Maritimes). Bull. Labo. Ponts et Chaussées, 220: 35-51

[3] Follacci J.P. (1987) Les mouvements du versant de La Clapière à Saint Etienne de Tinée (Alpes Maritimes). Bulletin de Liaison des LPC, n°150-151.

[4] Serratrice, J.-F. (2006). Modélisation des grands éboulements rocheux par épandage. Application aux sites de La Clapière (Alpes-Maritimes) et de Séchilienne (Isère). Bull. Labo. Ponts et Chaussées, 263-264: 53-69.

[5] Potherat P. (1994). Photo-interprétation du glissement de la Clapière – Analyse structurale cinématique du mouvement de 1955 à 1992. 7th International IAEG Congress Paris.

[6] Delacourt C., Allemand P., Casson B., Vadon H. (2004). Velocity field or the “La Clapière” landslide measured by the correlation of aerial and Quickbird satellite images. Geophys. Res. Lett. 31, L15619, doi: 10.1029/2004GL020193.


The Encyclopedia of the Environment by the Association des Encyclopédies de l'Environnement et de l'Énergie (www.a3e.fr), contractually linked to the University of Grenoble Alpes and Grenoble INP, and sponsored by the French Academy of Sciences.

To cite this article: DURVILLE Jean-Louis, PEREZ Jean-Louis, MAURIN Patrice (August 17, 2019), La Clapière: is the largest French landslide still a major risk?, Encyclopedia of the Environment, Accessed September 14, 2024 [online ISSN 2555-0950] url : https://www.encyclopedie-environnement.org/en/soil/la-clapiere-largest-french-landslide-major-risk/.

The articles in the Encyclopedia of the Environment are made available under the terms of the Creative Commons BY-NC-SA license, which authorizes reproduction subject to: citing the source, not making commercial use of them, sharing identical initial conditions, reproducing at each reuse or distribution the mention of this Creative Commons BY-NC-SA license.

昆布兰滑坡(La Clapière):法国最大的山体滑坡是否仍为主要风险?

PDF

  法国昆布兰的山体滑坡(Alpes-Maritimes)体积达5000万m3。1980年前后发现,滑坡呈加速趋势,随季节变化明显。1987年至1988年,速度达到峰值,人们开始担忧山体发生严重破裂,于是挖凿了引水隧洞。之后,由于滑坡体内部排水改善,其滑动开始减速。

环境百科全书-La Clapière-La Clapière的地理位置
图1. 法国昆布兰滑坡(La Clapière)的地理位置(摘自IGN地图)

  法国昆布兰(La Clapière)滑坡位于尼斯以北80km的南阿尔卑斯山(图1),发育于锡涅河左岸。锡涅河是瓦尔河的支流,距圣埃蒂安镇德锡涅村下游不到一公里。滑坡从海拔1100m的谷底延伸至海拔1760m处。滑坡总面积约1.2km²,体积约5000万m3(50hm3)。四十年前,人们察觉到巨石崩塌和道路变形,并检测到边坡失稳现象。1982年底,通过测量对侧距离,人们对滑坡移动情况进行监测。1984年,该公路暂时改道,1986年,公路最终置于锡涅河右岸的斜坡上。

  20世纪80年代末,人们预测此处可能出现严重断裂。为避免河谷大坝带来的风险,1988年塔捷耶夫(H.Tazieff)部长访问后,人们研发出隧道工程,准备于1989至1991年间建于锡涅河右岸。当时已确定滑坡底部禁入区及假定扩展区内的施工区,应急计划也已到位。然而,早在1988年,滑动体运动就出现减速,并被几个季节性峰值打断。2019年,累积位移超过100m后,主体似乎稳定下来(见动画Clapiere.avi)。

1. 古老现象重演

环境百科全书-La Clapière-滑坡的主要区域
图2. 法国昆布兰(La Clapière)滑坡的主要区域(摄于2007)[来源:©德维尔(J-L Durville)]

  该滑坡上留下了锡涅冰川占据山谷的足迹:底部的陡坡(约40°)、1600m左右的山坡及上面较软的斜坡。拉博恩斯支流的连接沟槽沿滑动面向东南方向延伸(图2)。滑坡体顶部分为两个瓣状裂片(图2);滑坡底部位于谷底,通过挤占锡涅河逐渐覆盖道路和冲积层。

  圣埃蒂安德锡涅村(Saint-Étienne-de-Tinée)年平均降雨量990mm。海拔3000m的山坡上部,冬春两季都有积雪覆盖。

1.1. 地质状况

  法国昆布兰(La Clapière)滑坡位于阿真泰拉-默坎图尔(Argentera Mercantour)地块西南边缘,与三叠纪的沉积岩相接触,源自海西期变质岩组成的斜坡。海西期变质岩主要为片麻岩、角闪岩和混合岩——即安妮尔(Annelle)系列,其中块状混合岩组成的厚达80m的伊格利尔地层可以独立出来(图3)。安妮尔系列的某些层上云母(黑云母)比例较高,能促进蚀变。

环境百科全书-La Clapière-通过锡涅山谷的地质剖面
图3. 通过锡涅山谷的地质剖面,请注意伊格利尔地层的岩坎和即将到来的下沉。据夫拉茨(Follacci )等人,1988年[1]。[来源:C Felix Darve]

  主要构造特征来源于海西期和阿尔卑斯构造阶段[1]。海西期的叶理通常平行于锡涅山谷,即西北/东南;其在深度上向地块内部倾斜,倾角为60°至80°(图3)。除叶理之外,两个不连续方向也起主要作用:N10°至N20°和N60°至N90°。在没有打钻孔的情况下,我们假设滑坡底部可能存在三叠系石膏岩,但现在可能受冲积物充填掩盖。

  距今13,000(以1950年为今)年前,锡涅山谷的冰川消退后,冰碛物和冲积层填满谷底,厚度达几十米。

  从水文地质的角度来看,该滑坡可视为一个两层模型:一层为基底,与锡涅山谷冲积层下的地下水相连并浸润至滑坡脚,另一层位于片麻岩减压区(地表几十米),填充滑坡顶部特别是上部。

1.2. 滑坡失稳的来龙去脉

环境百科全书-La Clapière-1986年的La Clapière
图4. 1986年的法国昆布兰滑坡(La Clapière)。[来源:德维尔(J-L Durville)]

  利用宇宙核素测年法测定斜坡上岩石悬崖的年限,确定首次滑坡失稳时间,即距今10,000年或冰消后约3000年。根据当前滑移,首次破裂可追溯到距今3600(-1650年)年前。

  在1938年的航拍照片上,可以看到开始形成高陡崖,与当前滑坡西北处的裂片相对应。20世纪50年代,两个裂片形成一个干净的高陡悬崖,而严格意义上,法国昆布兰滑坡(La Clapière)的岩锥边坡上布满了许多块体。

环境百科全书-La Clapière-多目标的月速度图
图5. 数个目标的月速度图(mm/d)。1982年至2013年间的视距测量。请注意,主滑坡的主要峰值出现在1987年末。[来源:文件© P.Maurin]

  大约1976年,岩锥的活动和坡脚的道路变形引起了当局的警惕。1977年,让·戈盖尔(Jean Goguel)现场考察后,尼斯桥梁和路面实验室(Laboratoire des Ponts et Chaussées de Nice)出具报告,质疑坡体是否存在大面积移动。距离测量证实了整体运动(图4),同时,与降雨或降雪有关的季节性波动明显,且加速趋势明显(图5)。

  1987年,西北裂片(NW裂片)出现新断裂,使上游陡崖形成弧形(图2)。1987至1988年冬天,某些点流速达到10cm/天(图5)。然而,运动随后迅速放缓。

环境百科全书-La Clapière-2016 年的 La Clapière
图6. 2016 年的法国昆布兰滑坡( La Clapière)。观察到西北(NW)处的裂片再次活动。[来源:© P.Maurin]

  1989年,拉邦(Rabuons)裂片上游出现明显倒退。 1997年,这一倒退加剧。这次倒退界定了上部滑坡范围(约5hm3),上部滑坡逐渐朝主滑坡推进(图2)。

  即使天气极度潮湿,滑坡减速仍会达到峰值,尤其是上层滑坡。减速一直持续至今,如今移动速度很低(自2010年以来,滑坡主体上大多数目标的位移不足20cm/年)。2010年初以来,已观察到西北(NW)裂片有明显位移,但未向上游倒退。

  累积位移达到100m至130m后,滑坡体表面会受到侵蚀,特别是上游陡崖(图6)。

2. 从各角度观察并测量滑坡

2.1. 距离测量

  1983年以来,利用红外线从对面测量距离的系统一直稳步运行[2]。测量数据由相距1公里的两个测距仪采集,长达数年,然后改用一台设备。滑坡内部和周围有30到50个监测目标。

  山谷中湿度和气温变化会干扰电磁波,为纠正误差,每次都会测量滑坡外围的3或4个固定目标。600m到1800m距离内,校正后的精度在3mm到6mm之间。

  此外,每年都会进行一次大地测量,确定3D位移矢量。

2.2. 数字差分地形模型

  利用不同日期采集的两个数字地形模型(DTM)评估给定点(x,y)地面高度变化(Dz)。因此,塞拉特里斯(Serratice)[4]比较了1970年和1997年航拍照片中的数字地形模型:滑坡下部的(明显)膨胀和上部的(明显)沉降非常突出(几十米),但体积平衡显示的变化非常小,不到1%。

2.3. 地面和卫星图像

  除经典的多日期照片解释法(该方法能确定滑坡的重要演变[5])外,不同作者还对航空照片进行了定量开发利用。

  德拉古(Delacourt)等人[6]对1983年、1991年和1999年的航拍照片进行校正后,估算了各滑坡段的水平位移。值得注意的是,两个极端日期之间,伊格利尔岩坎(Iglière’s bar)的西北段增加了160m,在东南段增加了120m,而滑坡底部前移了115m。

  德拉古(Delacourt)等人[6]利用1995年和1999年的航拍照片时采用了图像相关技术,获得了这两个日期间的水平位移图。

3. 运动学和机械模型

3.1. 古代时期变形

环境百科全书-La Clapière-断裂发展示意图
图7. 断裂发展示意图(根据夫拉茨(Follacci),1999年[2])。[来源:© Felix Darve]

  法国昆布兰滑坡(La Clapière)的斜坡由片麻岩组成,走向与山谷平行,其叶理向斜坡内侧极度倾斜。然而我们观察到,接近表面时,倾角逐渐减小,直至在滑动区附近变为水平,甚至倒置(图3)。这种倾角变化可以通过重力现象解释——修剪(mowing):河岸会在重力和坡度影响下倾斜,或因构造引起的地层褶皱而倾斜,两种原因可综合作用。

  冰川作用给滑坡留下的凸起几何形状容易造成滑坡下部失稳。冰川如同一只脚踩在地层上,其融化导致山体失衡,这一现象常见于冰川峡谷。然而,不稳定似乎早在锡涅冰川融化前就已开始。气候因素和石膏岩很可能彻底分解可能是导致断裂的原因。

  根据实地考察和航空照片解读,夫拉茨(Follaci)[3]建立了破裂发展模型,该模型在时间和空间上都不均匀。破裂首先发生在东南裂片,此处的破裂由于附近的拉邦(Rabuons)山谷而减弱。然后,破裂到达位于伊格利埃沙坝(Iglière’s bar)上方的西北裂片,最后覆盖整个高度(图7)。

  直到1990至1991年左右,上下部分的移动速度才趋于一致,表明其正向旋转型滑坡过渡。

  因此,可以保留夫拉茨(Follaci)[2]提出的断裂面逐渐“平滑”的图像(图6)。此外,由块状混合岩构成的伊格利埃沙坝是斜坡的加固层,其渐进性断裂可能导致了20世纪80年代的滑移加速。值得注意的是,滑动面上的“粗糙度”通常为坡度方向长度的1%至2%,此处该数值超过了10m。

3.2. 近期的滑动阶段:一点力学

  考虑到累积位移,可以假设1988年后形成了近似圆形的断裂面。虽然我们没有在滑坡上钻孔,但可以使用滑坡位移倾角估算约90m处的滑坡深度。假设边界平衡(不光滑)的条件下,反演得到剩余机械参数:粘聚力c’r=0,摩擦角φ’r=32.5°。

  1987至1988年危险期期间,滑坡动能(½MV²)不到1J,但每天的势能损失约为100MJ。因此,巨大的势能储备完全以滑动体内部的形变/破裂和滑坡表面的热量形式损失了。

  如比较1970年和1992年间的滑坡形态(位移100m, 断裂长度1000m),力矩的减小至少能在一定程度上解释1987年峰值之后减速的原因。但也可以从水文地质方面找原因。

4. 水文地质因素的重要性

环境百科全书-La Clapière-山体主体滑坡速度和锡涅河水流速度的相关性
图8. 山体主体滑坡速度和锡涅河水流速度目标为每天10mm。除1987年、1988年外,二者的峰值都有很好的相关性。[来源:塞勒玛数据平台(CEREMA),德维尔(J-L Durville)的图表]

  最初几年的测量中,速度的季节性变化显而易见(图8)。同时,出于监测和预警等科学目的,更注重关联速度和降水量(或锡涅河流速)。

  考虑到法国昆布兰滑坡(La Clapière)这样的岩石地块中复杂的水文地质情况,我们使用不同类型的“黑箱”或灰箱模拟了供水P(雨或雪融化,即使对雪融化的考虑可能不完美)和滑动速度V间的耦合。为了更好地反映P→V控制过程,我们将该过程分为水文地质部分“P→H”和力学部分“H→V”。因此,所有模型都包含假想的压力水位H,即供水量(降水P,或更好的入渗量I)与排水量之间的差值。根据第n天的H和前几天的P估计出第n+1天的H。模型的力学部分使用了不同的定律,简单将速度或加速度与H的高度联系起来。

  可以根据测量值调整这些模型的参数,使计算和测量结果一致,但必须经常校准。此外,这些模型无法预测滑坡行为的主要变化,特别是1987年的峰值速度。这似乎证实了流体力学行为发生了重大变化。同样,可以用临时阻塞来解释2001年或2013年观察到的颠簸(jolts)(图5)现象。

  因此,模型的这一弱点表明,不可能用其预测严重断裂;但该模型仍具备在几天内进行预测的价值,因为预测和测量间的任何差异都可能表明是滑坡行为发生了变化。

  一般而言,滑坡主体对输入水量的敏感性可以通过年位移量D与年降水量P的比值评估(表1)。1986年/1987年和2000年后,D/P比值显著减少了20至40倍。

表1 一年累计位移量(m)和累计降水量(m)。

  随时间的演变,水量控制可视为变形/渗透耦合的结果。因此,1987年至1988年峰值后的减速(图7)反映出不连续点迅速开放,从而促进排水。值得注意的是,1996至1997年间的第二个峰值可能与排水能力的暂时下降(裂隙封闭等)相对应。

5. 滑坡的传播

环境百科全书-La Clapière-塌陷锥体
图9 塌陷锥体:滑落体积5hm³,坡度为30°。[来源:根据塞拉特里斯(Serratrice),2006,参考文献.[4]]

  20世纪80年代中期,在一次影响范围约50hm3的加速运动期间,出现了潜在的山谷堵塞问题。采用不同方法对材料的传播和扩散进行了多次模拟:连续的粘性流体介质、带摩擦力的连续基本体单元滑动,以及锥法等简单方法(图9)。

6. 总结

  • 在法国,昆布兰的滑坡(La Clapière)是第一个受各类精确仪器监测的大型滑坡运动,而几年后,也在伊泽尔(Isère)的塞奇利耶纳(Séchilienne)滑坡安装了相关设备。
  • 虽然这类仪器的主要目的是保障公共安全,但其科学贡献也十分丰富,主要体现在分析水文地质控制。另外,对滑坡现象的进一步了解提升了滑坡施行监测的可靠性。
  • 法国昆布兰滑坡(La Clapière)的历史已接近尾声,其真正活跃阶段已经结束,现处于因侵蚀造而缓慢退化阶段——除非上游出现显著衰退。在这几千年的历史中,最令人震惊的是,并没有发生波及数百万立方米的急速灾难性滑移, 这一现象最有可能发生在1987年。
  • 1987年底,法国昆布兰滑坡(La Clapière)突然减缓,因此没有发生灾难性滑坡,这得益于水文地质条件的变化,显著的累积变形有利于滑坡体排水,同时减少液压影响。为此,对于变形和地下水力条件间的耦合,我们可以加上因滑坡体百米下滑而减少的力矩。尽管非常缓慢,但这一下滑一直持续至今。

参考资料及说明

封面照片:[来源:©J-L德维尔(J-L Durville)]

[1] Follacci J.P.、Guardia P. Ivladi J.P.(1988),La Clapière (Alpes-Maritimes)的地球动力学环境中的滑坡,国际滑坡研讨会,洛桑。

[2] Follacci,J.-P.(1999),La Clapière滑坡(Alpes-Maritimes)16年的监测,路桥中央实验室通讯,220:35-51

[3] Follacci J.P.(1987),从La Clapière到圣埃蒂安-德锡涅村(Alpes-Maritimes)的滑坡运动,LPC联络公报,n°150-151。

[4] Serratrice,J.-F.(2006),采用扩散法模拟大型岩体滑坡,适用于La Clapière(Alpes-Maritimes)和et de Séchilienne(Isère)地区,路桥中央实验室通讯,263-264:53-69。

[5] Potherat P.(1994),La Clapière 滑动的照片解释—1955年至1992年滑动的运动学结构分析,巴黎第七届国际IAEG大会。

[6] Delacourt C.、Allemand P.、Casson B.、Vadon H.(2004),通过航空和Quickbird卫星图像的相关性测量的“La Clapière”滑坡或流速场,Geophys. Res. Lett,31,L15619,doi:10.1029/2004GL020193。


The Encyclopedia of the Environment by the Association des Encyclopédies de l'Environnement et de l'Énergie (www.a3e.fr), contractually linked to the University of Grenoble Alpes and Grenoble INP, and sponsored by the French Academy of Sciences.

To cite this article: DURVILLE Jean-Louis, PEREZ Jean-Louis, MAURIN Patrice (March 12, 2024), 昆布兰滑坡(La Clapière):法国最大的山体滑坡是否仍为主要风险?, Encyclopedia of the Environment, Accessed September 14, 2024 [online ISSN 2555-0950] url : https://www.encyclopedie-environnement.org/zh/sol-zh/la-clapiere-largest-french-landslide-major-risk/.

The articles in the Encyclopedia of the Environment are made available under the terms of the Creative Commons BY-NC-SA license, which authorizes reproduction subject to: citing the source, not making commercial use of them, sharing identical initial conditions, reproducing at each reuse or distribution the mention of this Creative Commons BY-NC-SA license.