压强、温度和热量

Encyclopédie environnement - pression - temperature pression and heat

  压强、温度和热量是日常生活中,特别是在气象学中最常使用的物理量。然而,它们的物理定义要比看上去更复杂些,这是历史长期演变的结果。热量代表了组成物质的基本粒子的动能,这些粒子包括原子、分子和电子。就气体而言,应用简单的力学定律就可以建立联系压强、体积和温度之间关系的理想气体定律,这些概念可推广到电磁辐射,即光子气体在物质中平衡的领域。

1. 压强

环境百科全书-热量-压强测量
图1. 气压计、水银柱(左)、真空盘(右)。[图片来源:雅克·米兰经玛丽·穆吉亚努生活维基百科,已获授权]

  流体压强的定义是在其容器中单位面积的容器壁上所受到的压力(或推力),当容器同一壁面两侧都受到压力时,该壁面在单位面积上所受的净力为两侧所受到的压强差。因此,为了测量流体中的绝对压强,有必要在一侧保持真空状态。利用在大气压作用下空气囊的形变来反映气压的大小,这就是气压计的原理。图 1(右)给出了一个机械气压计,其中圆盘的形变会传递给一个指针,获得压强的变化。近代的仪器一般都采用同样的原理,但是会配有电子应变仪和数字显示。

  历史上,第一次的压强测量是用水银在U型管中进行的,如图 1(左)所示,最开始,U型管在倾斜的情况下灌满水银,待其竖直之后,汞柱会下降到A处位置,并在其上端形成真空,而表面B处保持着与大气接触。此时,在海平面处超出的压力就由高度为76 cm汞柱的重量来补偿,它等于高度与密度(13600 kg/m3)和重力加速度(9.8 m/s2)的乘积。由此可得,76 cm汞柱的高度就相当于标准大气压1.013×105 Pa。压强的国际单位是帕斯卡(1 Pa = 1 N/m2),除此之外,人们还常用巴(105 N/m2)和毫巴,也称百帕斯卡(1 hPa = 103 N/m2)。

  依据此原理,埃瓦里斯塔•托里塞切利(Evarista Toricelli)于1645 年制造出了第一台水银类型的气压计,用于解释佛罗伦萨喷泉中喷出的水柱高度不会超过10 m,就会自动分散开来的现象。当使用水银进行类似实验时,密度增加了13.6倍,极限高度减小到76 cm。托里塞切利(Toricelli)将大气压力的产生归因于空气的重量,这种说法以及对“真空”概念的理解在那时引起了广泛的讨论。1648年,布莱斯·帕斯卡(Blaise Pascal)在多姆山上进行了他的著名实验,证实了压力会随着海拔的升高而降低,这为今后的研究提供了至关重要的证据。由此可知,在海平面处,我们的身体被整个大气包围着并产生压力,它就相当于一个10 m高的水柱,在进行水肺潜水时,潜水员每下降一米,所承受的压力都会增大;相反,任何形式的上升都会减小压力。

环境百科全书-热量-平衡
图2. (a)流体柱的静力学平衡,(b)含有三个面的某个角处表面上的压力达到平衡:斜面p3a上的力可分解成垂直分量p3asinθ和水平分量p3a cosθ,它们必须分别与 水平分量p1asinθ和垂直分量p2acosθ相平衡(与边的长度的sinθ和cosθ分别成正比)。即意味着p1 = p2 = p3,三者压力相等。

  由此可见,液柱的重量与两端的压力差互相抵消来维持液柱的平衡( 图 2a),这种说法仅适用于上下壁面都是水平的情形。但是,侧壁的压力与它的取向是相关的,如 图 2b表示的一个角上的表面压力相互平衡的情况。力的方向始终垂直于壁面,这是因为在静止状态下诸如空气或水之类的普通流体无法传递切向力[1]。我们用p1、p2、p3分别表示角的三个面上的压力,由在水平和垂直方向上的力的投影可知,p1、p2、p3这三个压力在水平和垂直方向上都要保持平衡[2]

  另一方面,作用在我们皮肤上的巨大气压并不会对我们造成伤害,这是因为我们的肺中存在着一对大小相等方向相反的力[3]。实际上,压强的矢量总和方向是向上的,所以对我们而言绝不是负重。其实,它就是阿基米德浮力,它等于被排开的空气重量之和,这个力可以减轻约等于空气密度与人体密度之比1/800的自重。由于作用在表面上的压力,静止流体中任何部分的重力都能和阿基米德浮力保持平衡。

  因此,无论受压力的平面方向如何,在流体中任一点都可以定义压力。由液柱重力引起的压力称为静压力,由流体运动的加速度所引起的压力称为动压力。旋涡中心的低压是导致水盆或河流中水面下陷,或龙卷风掀起屋顶的原因,这些现象都可以理解为压力与指向旋涡外侧离心力的平衡,在旋涡中心,压力必须低于周围压力以补偿离心力。对于大尺度的大气旋涡,由于科里奥利力的作用,在气旋的中心会存在低压,其旋转方向与地球旋转方向相同(有关介绍请参阅“热带气旋:形成与结构”),而反气旋是大气高压的发生地(链接待更新)。

2. 温度

  我们自身可以感觉冷热,并通过直觉感受到温度。然而,温度却是最难定义和测量的物理量之一。19世纪末以来,人们已经认识到温度是指原子或分子等构成介质的基本粒子的动能。在实践中,温度计是测量温度的工具,它的最传统的制作方法是利用液体可以膨胀的原理,据此,伽利略(Galileo)早在1602年就发明了温度计(图 3左),随后又发明了液体温度计(酒精或水银)。1724年,物理学家丹尼尔·加布里埃尔·法伦海特(Daniel Gabriel Fahrenheit)提出了一种至今仍在美国使用的温度标度:0 ℉是他在但泽市(格但斯克)测量到的最低温度,100 ℉则是他在马的屁股里测得的最高温度。与之不同,瑞典的安德·斯尔修斯(Anders Celsius)分别用融化的冰和沸腾的水来定义0 °C和100 °C,两标度之间的温度均匀分布[4]。在那个时期,它只是温度的一个标度,而不是一个测量值,因为实际的温度需要乘上一个因子才有意义。

  可以通过检测因温度变化引起其他现象的变化来测量温度。电子温度计通常利用电阻的变化来测量温度,可以选择稳定性好的铂膜或者高温敏感性好的半导体热敏电阻液晶通过颜色的改变可直接显示温度;热电偶是将两种不同种类的金属丝的两端分别焊接在一起,当焊接的两端存在温度差时,可通过它们之间产生的电位差来测量温度的变化。

  一个基本的观察结果是处于静止状态并与外界隔绝的环境趋向于均一的温度状态,称之为热平衡。因此,如果两个物体在接触后仍保持相同的平衡状态,则称它们的温度是相等的。

  温度计显示的是温度计自身的温度。因此,有必要确保温度计与要测量的介质之间处于热平衡状态。这就是气象学中必须在封闭的条件下测量温度的原因( 图 3右)。如果有辐射照射到温度计上(例如,来自太阳、地面或被太阳加热的墙壁的辐射),温度计的温度会升高,并且不再与大气保持平衡。另外,温度计一定不能被弄湿,因为蒸发会使它的温度降低。

  所以,我们感觉和估计的“温度”值并不总能代表温度的精确值。在温度均一的房间里,金属摸起来要比木头冷,因为它能更强地吸收人体的热量。同样,风和湿气会增加我们的寒冷感,气象预报试图通过“体感温度”来描述这种效应,但这只是一个模棱两可的经验主义说法,不能将它与温度混淆。我们感觉到的环境变凉或变暖的趋势受很多因素影响,例如衣着的厚薄、当地的风力、空气的湿度以及太阳辐射等,这些都会对我们皮肤产生直接的影响。

3. 热量

  与温度不同,热量与被加热物体的质量成正比,并且能在不同的物体之间传递。原先的单位是卡路里,表示在加热1 g水升温1 °C时所需的热量,例如加热10 g水升温1 °C或者加热1 g水升温10 °C所需的热量为10 卡。

  19世纪以前,热量一直被认为是一种“热”的流体。推测它由火产生,可以传播到不同的环境中。直到19世纪40年代,詹姆斯·普雷斯科特·焦耳(James Prescott Joule)深入研究之后,才认识到热量是一种能量形式(有关介绍,请参阅“能量”)。他使用的机械装置如图 4所示,并且他还利用电流开展了实验。对于经常使用电热水器的我们来说,熟知热量和能量之间的等效关系,但在19世纪就截然不同了。如今热量用焦耳表示,1卡热量相当于4.18焦耳[5]

环境百科全书-热量-焦耳机械装置
图4. 詹姆斯·普雷斯科特·焦耳的肖像(左)和他发明的机械装置(右),通过测量物体下降引起的水温升高值来表达热量和机械能之间的等价关系,质量M = 100 kg的物体下降高度h = 1 m,可以产生gMh = 1 Kj的能量,这些能量可将250 ml水的温度提高约1 °C。

  单位质量物质所具有的热容量称为比热,它反映了物体的储热能力,更为精确的定义是1 kg质量的该物质温度升高 1 °C所需的热量。如我们所知,液态水的比热是4.18 kJ / kg /°C(每1 g为4.18 kJ),这是一个特别高的值,比如:它约等于干燥地面比热的5倍。

  把1 kg 50 °C的水与1 kg 0 °C的水混合,经过冷热水之间的热传递,两升水的温度将变为25 °C。铁等金属的比热比水低约十倍,(CFe = 0.1Ceau),因此将1 kg 处于50 °C的铁置于1 kg 0 °C的水中,温度为teq时达到热平衡,CFe(50-teq) = Cwater(teq-0),此过程中铁将热量传递给水使其温度由0 °C升至teqteq = 50*CFe/(CFe+水) = 4.5 °C。

  蒸发潜热是指在恒定温度下,某物质从液相转变为气相所需要的热量。一升水的汽化热为2257 kJ / kg(在标准大气压和100 °C的条件下),等于一升水从0 °C加热到100 °C所需热量的5.4倍。这种转变是可逆的,凝结过程中也会释放出相同的热量。通过对流促进热空气上升在气象学中发挥着重要的作用,在飓风或气旋中心,凝结限制了气体过度膨胀,从而提高了上升流体与周围环境的超温。在气象学中,显热表示与温度上升相关的热量,而潜热是与水汽形成相关的热量。例如在热带气旋中,太阳辐射提供潜热使海水蒸发,当水汽在空气中上升时发生凝结,潜热又以显热的形式释放出来。

  将凝固的冰转化为液态的水需要提供333 kJ / kg的融化潜热,它约为蒸发潜热的1/7,但仍相当于将液态的水升高80 °C所需的热量。另一方面,凝固时它以显热方式释放出来,但必须将这些热量抽走从而使凝固得以进行。

4. 理想气体定律

  在18世纪,实验证明了充分稀释的气体满足理想气体方程,该方程表明压强p与体积V的乘积仅由温度决定。因此,在恒定温度时,用活塞将汽缸中的气体体积压缩一半,其压强会增大一倍。此外,该实验发现 pV的乘积是温度的线性函数,将该关系推广到比气态温度更低的情况,发现当温度t = -273 °C时pV的乘积为零,此关系适用于所有气体。该观察结果表明可以用T = t+273来定义绝对温度,用开尔文(K)表示,当温度接近T = 0 K时,称为绝对零度

  理想气体定律的表达式为pV = nRT,其中n代表气体的摩尔数R = 8.31 J/mol/ K。该公式反映了阿伏伽德罗定律,即在给定的温度和压力条件下,相同体积的不同理想气体始终包含相同数量的分子。1811年,阿伏加德罗提出了这项定律,在很长一段时间内被忽视或争论,当时原子和分子的概念是非常模糊的,如果难以计数原子数目,可以通过它们的化学组合来比较不同原子的相对质量。因此,我们知道 16 g甲烷气体由12 g碳和4 g氢组成,可以将12 g的质量分配给1 mol的碳原子,1 g的质量分配给1 mol的氢原子(2 g的质量分配给H2分子)。当然,这需要通过参照各种化学反应获得化学公式的知识[6]

  自20世纪以来,我们就已经知道如何“计数”分子的数目,并因此估算出了阿伏伽德罗常数NA的数值,即1mol物质所含的分子数量。所以理想气体方程也可以用pV = NkBT的形式来表达,其中N是分子数,kB是玻尔兹曼常数 ,其中kB = R / NA = 1.38×10-23  JK-1

5. 温度与分子动能

  早在1738年,瑞士物理学家,数学家和医生丹尼尔·伯努利(Daniel Bernoulli)就了解到可以用分子在容器壁上的撞击效应容易地解释气体的压强。因此,应用重要的力学定律可以将压强与分子在一个方向上的平均动能联系起来,由公式pV = m<u2>表示(其中“< >”表示分子的平均值)。随着理想气体方程的确认,可将绝对温度理解为分子在一个方向上的动能,由公式(1/2)m<u2> = (1/2)kBT表示,该公式也可以写成(1/2)(NAm)<u2> = (1/2)RT。对于空气来说,平均分子量NAm = 29 g ,在常温T = 300 K时,分子运动的速度为300 m / s [7],对于10-15 kg的花粉颗粒(直径为1 μm),速度为2 mm / s。在显微镜下对布朗运动的观察实现了玻尔兹曼常数的首次测量,进而得出了阿伏伽德罗常数。

  除了根据水的性质来定义温标的习惯之外(100 K是指在标准大气下水的沸点和融点间的温差),用能量单位而不用开尔文表示温度也是合理的(因此kB = 1 ),这确实是物理学中的一种常见做法。

  该理论还可以用来计算气体的比热。要将温度升高1 K,需要给每个分子在给定方向上的平移运动提供(1/2)kB的能量。由于分子在三个维度上都做运动,必须将能量乘以3才能得到总的平移动能,因此每个分子的比热为(3/2 )kB或者说每摩尔分子的比热为(3/2 )R [8]。对于氩或氦等单原子气体,这已得到了验证,但对于分子,则必须考虑内部转动的能量,这些运动包含能量但不会产生压强。对于含有双原子的分子,比如空气的主要成分氮气和氧气,这些转动具有kBT的能量,所以比热是(5/2)R。

  在液体或固体中,温度与分子动能之间的关系更加复杂。分子或原子通过分子间的吸引力保持紧密的连结,需要消耗蒸发潜热来克服这些吸引力。融化也需要消耗能量,才能从原子周期性排列的固体转变成无序堆积的液体。这些效应都是可逆的,潜热在逆向凝结和凝固过程中会以显热的形式释放出来。

  气体温度计的原理是基于理想气体定律用气体压强测量温度,它可以为校准其他温度计提供参考。但是,从理论上讲,物理学家宁愿使用可以直接适用于任何介质而不涉及气体的更基本的定义。另外,在温度非常低时,所有介质都会凝结,没有气体可供参考。这就产生了了基于熵概念的介质温度的定义(有关介绍,请参见“热力学”)。当有气体温度可供参考时,该温度与通过理想气体定律获得的温度一致。

6. 传热

  任何封闭的环境都趋向于温度均一的热平衡状态[9],有三种不同形式的过程可以将热量从高温区传递到低温区进而实现热平衡。

  热传导,也称热扩散,是通过物质成分的无序运动来进行热能传递的方式,比如:气体分子之间的振荡、固体的振动、金属中的电子传输。传导在小范围内有效,例如我们观察到几厘米的高温物体在热传导的作用下几分钟内就可以冷却下来。冷却时间取决于介质的热导率,也与物体尺寸平方成正比,因此对于100倍大的物体,其冷却时间会增大10,000倍。因大气温度下传到地下数米处需要几个月的时间,这就是地下温度常年保持恒定的原因。如果土壤年平均温度低于0 °C,则地面将永久冻结,即永久冻土(有关介绍,请参阅“永久冻土”)。

  在流体中,对流是传热的主要机制,它指的是流动的介质传输自身包含热量的过程。这时,热扩散仅在壁面与流体接触的很薄的热边界层内进行。当流体由机械驱动时,就会产生强迫对流,例如,泵所驱动的冷却系统。自然对流是指由于热效应本身引起的密度变化而产生的流体流动,这就是平底锅中加热的水或散热器上方热空气产生流动的原因,大气流动是一个巨大的自然对流系统。

7. 热辐射

  辐射是传热的第三种类型,是我们从太阳中接收热量的方法。在电子从激发能级跃迁到较低能级的过程中,原子通常会发射光,其发射频率v与不同能级之间的能量差E相关,这种关系通过著名的关系式E = hν表示,其中h 普朗克常数,等于6.6×10-34 m2 kg / s。辐射由能量为E光子组成,在激光或荧光灯管中,光的单个或有限数量的跃迁称为发射线

  在太阳中,光子在被发射到太空之前会在气体中进行长距离的辐射,期间会通过多普勒效应随机改变它们频率,从而改变它们的能量。因此,它们会获得与物质处于热平衡状态的能量分布。这种辐射被视为一种光子气体,它也可以在像炉子那样的腔体中被观察到,腔体的壁能发射并永久吸收辐射。

  与传统气体分子不同,光子气体始终以光速c运动。另一方面,通过类比分子气体,推测光子气体的平均能量kBT成正比。这也可以用波长λ= c /ν(在周期1 /ν中经过的距离)表示,从中得出hc/λ~kBT或者 λT~hc/kB。这一猜想符合维恩定律,该定律更精确地表达了最大光谱密度的波长λmλmT = 0.201 hc / kB = 2.896 10-3 mK(有关介绍,请参阅与辐射相关的文章)。对于发射表面温度T = 5700 K的太阳,该波长λm = 0.5 μm(黄光),而对于T = 570 K(297 °C)的电辐射器,波长等于5 μm,属于红外线。

  温度为T时,处于热平衡状态的辐射在最大波长λm附近存在一个波长分布,称为普朗克光谱黑体辐射光谱。黑体是指吸收所有外来辐射的物体。如果将黑体放置在温度为T的空腔中,它必须重新发射它所吸收的所有能量以保持与周围环境的热平衡,这表明单位面积的总辐射功率与T4成正比。

  任何物体都会发出或多或少类似于黑体的热辐射。如果一物体只吸收所接收到辐射的一部分η,它也必须辐射掉一部分的黑体辐射η。否则,如果将其置于温度为T的空腔中,它会自发冷却。在平衡状态下,物体发射的能量和吸收的能量一样多,这就是基尔霍夫定律,该定律适用于任何温度,因此也适用于任何波长(有关介绍,请参阅热辐射相关的文章)。值得注意的是,激光或荧光灯的发射线超过了相关波长的热辐射,这属于电激发,而不是热激发。相反,在太阳光谱以及地球发射的红外光谱中观察到的吸收线(有关介绍,请参阅辐射与气候相关的文章),是在通过比发射区更冷的大气层中吸收产生的。

 


参考资料及说明

[1] 然而,沿壁的流动会产生切向力,称为剪切力。

[2] 在较短的长度a范围内,无论流体的密度如何,可以忽略在该区域中的空气重量(实际上,重量与a2成正比,因此相对于与a成正比的压力,重量可以忽略不计)。

[3] 在水肺潜水期间,绝对不要阻塞呼吸,以免破坏内部与外部的压力平衡。

[4] 最初,在1742年,摄氏使用了从100到0的刻度,然后反转成现在的形式。

[5] 请注意,仍然用于表示食物提供的能量的卡路里实际上是千卡,1千卡等于4.19千焦。

[6] 阿伏伽德罗定律本身也用于约束化学式,因此,为了验证这一定律,阿伏伽德罗不得不假设氧气或氮气等气体是由双原子分子组成的,而不是由孤立的单原子组成,这在当时似乎是没有根据的临时假设。

[7] 一般可以证明,气体中的分子速度接近于声速。

[8] 更准确地说,它是恒定体积下的比热CV,当气体被加热到恒定压力时,它会膨胀并因此冷却,然后必须提供额外的热能,这导致恒压下的比热是CP=CV+R/mol。

[9] 更一般地说,我们所说的热力学平衡包括压力和可能发生的化学反应的机械平衡。


译者:王畅          编审:李家春院士、王晓东教授        责任编辑:杨茹月


环境百科全书由环境和能源百科全书协会出版 (www.a3e.fr),该协会与格勒诺布尔阿尔卑斯大学和格勒诺布尔INP有合同关系,并由法国科学院赞助。

引用这篇文章: SOMMERIA Joël (2021), 压强、温度和热量, 环境百科全书,[在线ISSN 2555-0950]网址: https://www.encyclopedie-environnement.org/zh/physique-zh/pressure-temperature-and-heat/.

环境百科全书中的文章是根据知识共享BY-NC-SA许可条款提供的,该许可授权复制的条件是:引用来源,不作商业使用,共享相同的初始条件,并且在每次重复使用或分发时复制知识共享BY-NC-SA许可声明。