2021诺奖得主克劳斯·哈塞尔曼与真锅淑郎对气候物理学的贡献

hasselmann Manabe prix Nobel physique

  2021年诺贝尔物理学奖授予了真锅淑郎(Syukuro Manabe)克劳斯·哈塞尔曼(Klaus Hasselmann 乔治·帕里西(Giorgio Parisi 三位科学家。瑞典皇家科学院在颁奖词中写道:真锅淑郎与克劳斯·哈塞尔曼“为我们了解地球气候以及人类活动对其影响奠定了基础”,乔治·帕里西“为无序随机现象理论做出革命性贡献”。本文将重点探讨真锅淑郎与克劳斯·哈塞尔曼的研究。有关乔治·帕里西的研究可参见本百科“物理”专栏“2021诺贝尔物理学奖得主乔治·帕里西对统计物理学的贡献”一文。

  2021年诺贝尔物理学奖的一半被授予真锅淑郎与克劳斯·哈塞尔曼。那么,他们到底做出了何种贡献?瑞典科学院在颁奖词中表彰两人“对地球气候的物理模拟、变率的量化和全球变暖的准确预测”做出的贡献。这一领域的研究对物理气候学有何重要意义?两位科学家有何共同点,又有什么不同之处?哈塞尔曼从事该领域前沿研究长达40余年,真锅淑郎则长达50余年,几十年来,该领域研究的进展如何?本文试图对以上问题做出解答。

1. 引言:气候,对人类至关重要的复杂物理系统

环境百科全书-诺贝尔物理学奖-气候系统的组成部分及相互作用
图1. 气候系统的组成及相互作用。[来源:政府间气候变化专门委员会(IPCC)第四次评估报告]

  气候是复杂物理系统的一个典型例子。它是由基本的、已被人们充分理解的物理、化学和生物过程所驱动。但是在广泛的时空尺度上,气候系统(图1)中众多过程和各组分之间的相互作用会产生复杂的气候过程。而这些气候过程我们很难从数学的角度去描述和预测。

  真锅淑郎是利用计算机进行物理气候模拟的先驱科学家之一。利用计算机强大的计算能力再现了气候系统中各过程之间的相互作用,从而通过数值模拟理解气候系统的演变规律。50多年前,真锅淑郎和同事们的研究为预测温室气体排放对气候的影响奠定了基础。在下文我们会看到,真锅淑郎早已对当今气候变化的重要时空特征进行了描述。

  克劳斯·哈塞尔曼的工作为我们更好地理解可预测的气候系统反应是如何在短时间尺度上从混沌行为中产生的。哈塞尔曼这项长达40年的研究为新的气候学分支奠定了基础,该分支研究如何测气候变化、分析原因、并进一步将其归因于人类或自然因素。哈塞尔曼开发了识别自然变率和人类活动在气候系统中留下“指纹”(Fingerprint)的方法。正是基于该领域的研究,政府间气候变化专门委员会才能够证实过去150余年间检测到的气候变化中人为因素起主要作用。

  劳斯·哈塞尔曼的工作为我们更好地理解可预测的气候系统反应是如何在短时间尺度上从混沌行为中产生的。他在40年前的开创性工作中做出的重要贡献,是为气候学的一个分支铺平了道路,该分支研究气候变化的探测和其原因的确定,从而将其归因于人为或自然原因。他的识别“指纹”的方法现在允许IPCC判断,在过去150年左右观察到的气候变化中,人类本性的主导作用是一个证据。

  本文后两节将详细介绍真锅淑郎与哈塞尔曼二人的贡献。

2. 物理气候模拟

  正如有关“气候模式”一文所言,物理气候模拟主要基于两大支柱。

  一大支柱包括大气环流的模拟(后来海洋环流也被囊括其中),主要以100千米为尺度。包括分钟尺度上的流动力学方程的计算。因此能够对主要的天气系统以及其每小时的历时演变清楚地进行模拟。随着早期计算机的出现,甚至在计算机问世之前,理查森[1]早在1950年代就开创了大气环流的模拟研究[2][3]。其研究的长期目标是进行数值天气预测,而非气候变化模拟。气候变化模拟在当时受到了一定的关注,但并不被认为是紧迫的问题(参见:《关于气候变化的思考(16-21世纪)》)。

  另一大支柱就是在更新的模式中模拟其他物理、甚至是化学和生物地球化学过程。这在气候建模者行话中经常被称作“那个物理学”(‘the physics’),涉及不同大气辐射过程的模拟。真锅淑郎的研究便是围绕着这一“物理学”支柱。他的突出贡献在于解释了20世纪60年代温室气体浓度上升产生的后果,对物理气候学这一新兴学科未来的发展至关重要。

  早在19世纪末,阿伦尼乌斯(Arrhenius)[4]就基于二氧化碳辐射特征进行了计算,解答了二氧化碳浓度翻倍后全球均温会上升多少的问题。这一温升数值被称为气候敏感度。阿伦尼乌斯估计这个值大约在5℃或6℃。(阅读:《从温室效应的发现到IPCC》

  但最终是真锅淑郎在三篇文章中[5][6][7]利用三维大气环流模式成功量化了这个气候敏感度。

  2021诺贝尔物理学奖委员会重点提到了真锅淑郎和斯特里克1964年发表的研究论文,包括他们开发了一维大气模式(竖栏,图2),其中将垂直温度廓线作为大气气体辐射特性和湿对流调整的函数进行计算[8]

环境百科全书-诺贝尔物理学奖-真锅淑郎气候模式以及真锅淑郎和韦瑟尔德模式
图2. 真锅淑郎气候模式以及真锅淑郎和韦瑟尔德(1967)模式中大气温度廓线对大气二氧化碳浓度翻倍和减半的响应。[来源:约翰·查恩纳思达得,瑞典皇家科学院]

  真锅淑郎和韦瑟尔德(1967)在他们的第二篇论文中对该模式进行了改进(用固定相对湿度廓线代替固定绝对湿度廓线)。改进后的模式能够再现水汽反馈,即更暖的空气能够容纳更多的水汽,进而增加温室效应。真锅淑郎和韦瑟尔德二人使用该模式重新计算气候敏感度。他们得到的结果是二氧化碳浓度翻倍后,气候敏感度增加2.3℃。这对气候科学来说可能不算重大成果,但对气候模拟来说具有重大意义。

  得益于计算机技术的进步,真锅淑郎和韦瑟尔德将他们的模式进一步改进为三维版本。这一版模式更加完善,包括了全部(但简化了)的热传导方程、质量方程、动量方程和辐射方程;在这个简化的模型中(图3),地球被呈现为一个理想半球的三分之一,这一区域位于赤道和北纬66.5°之间,一半是大陆,一半是海洋,这一区域之外的地区都是大陆,且区域内东西边缘存在循环;“海洋”只不过处理为“湿地”。尽管运行这个模式的计算机甚至不如今天的智能手机强大,模式相对简单,但这项研究确实对其1967年的研究结果进行了进一步的澄清和扩展。可以确认1967年气候敏感度的值为2.93℃。如今,IPCC [9]给出的这个敏感度的估算为3℃(2.5℃-4℃之间)。1975年的研究拓展了1967年的结果,它能够呈现出气候变化的几个重要特征,比较典型的就是北半球高纬度气候变化的强化以及水循环的增强。

环境百科全书-诺贝尔物理学奖-真锅淑郎和韦瑟尔德模型下的地球
图3. 1975 年真锅淑郎和韦瑟尔德模型下的地球。解释大陆/海洋分布的图示。更多细节描述见原文。[来源:真锅淑郎和韦瑟尔德的图表修改版,大气科学期刊, 32 (1), 3-153]

  自此,气候科学家的数量大幅增加,计算机计算能力也大幅提升;观测能力和技术,尤其是通过卫星进行的观测更为准确、更加完整。气候变化在20世纪70年代仅仅只是科学家做出的一项预测,但现在来看,气候变化已成为不争的事实。可见,真锅淑郎(以及其他领军人物,很多已去世)研究的科学效力,富有远见。

3. 如何在天气“噪声”里检测气候变化,如何证明气候变化与人类活动有关。

  20世纪70年代,“人类活动导致气候变化”这一论断还只是科学家做出的一项预测而已。如图4所示,1970年,全球均温相较于世纪初有所上升,但幅度较小,并未实际突破自然(年际和年代际)气候变率的“噪声”。然而,克劳斯·哈塞尔曼在这个时期的研究却能为今天的气候变化检测和归因奠定基础。

  气候系统的一个基本特征就其在不同时空尺度中都会存在变化,首先是气象变化。因此,任何检测气候变化的尝试,核心要解决的问题则是判断过去几十年内观测到的均温变化(阅读:《地球平均温度》)是否已经超出了自然变率“噪声”的范畴。2021诺奖委员会引用的有关此问题的第一项研究就是哈塞尔曼1976年发表的研究文章[10]

环境百科全书-诺贝尔物理学奖-气候模式模拟
图4. 观测到的全球均温(黑色),用只考虑自然因素(蓝色)的气候模式模拟,以及既考虑自然因素又考虑人为因素(温室气体浓度,臭氧,气溶胶,土地使用变化)的气候模式模拟(红色)。[来源: ©约翰·查恩纳思达得,瑞典皇家科学院]

  这篇研究文章题为“随机气候模型”,克劳斯在这项研究中使用布朗运动进行类比,分析气候系统中两大组成部分之间的系统变化范围。两大部分之一为大气,它短时间内变化较大(气象学范畴),另一部分为海洋,惯性更强。这个简单精巧的模型表明 “慢变”部分(即海洋)结合了大气“白”噪声[11](所有时间尺度的混沌天气变化);此模型还展示了慢速变化主导的变率范围。海表面积大,温度惯性高,是长期尺度上气候系统动力组件,因此,我们通过这个研究把自然气候变率理解为 “红”噪声

  思考下图4 [12]。通过比较所观测到的气候变化(黑色曲线)和气候模式所模拟的1900-2020年间具有(红色曲线)/不具有(蓝色曲线)人为强迫的情景,可以很容易地发现人类活动是气候变化的主要原因。如果该模式模拟现实的气候变化时考虑了人为因素,那么在21世纪初缺少人为因素考量的气候模拟则会和实际观测到的情况迥然不同。如今,红蓝曲线泾渭分明,人类活动产生的影响可以清晰地从自然变率噪声中浮现出来。克劳斯的主要贡献在于其1979年的论文[13]为识别人类活动所导致的气候变化“指纹”奠定了基础。

  “指纹”[14]气候模式对人为强迫响应的时空结构,而非气候模式对人为强迫响应的程度(即对温室气体浓度、气溶胶排放或者土地利用改变的响应)。一旦通过数值模拟了解了这些响应的时空结构,我们可能接下来会自问有多少观测到的气候变化可以归因于人类活动。一些统计方法可用于此项研究。本质上,这是基于模拟人为因素影响的时空结构(而非基于模拟的影响程度),重建观测到的变化。就温室气体而言,它是指模式模拟的气候敏感度。此方法具有众多优势,最重要的是其高效性,对产生气候变化的人为因素归因分析比较可靠。就像桑特(Santer)等人[15]写到“哈塞尔曼不是在干草堆里一个角落接着一个角落“捞针”,而是强调效率策略,多管齐下……”

4. 要点

  • 克劳斯·哈塞尔曼强调19世纪中期以来的气候变暖主要是人类活动所导致的,奠定了气候变化的检测和归因工作的基础。
  • 真锅淑郎创立了第一个关于气候对大气中二氧化碳浓度敏感度的模式。早在1967年,第一版模式预测到二氧化碳浓度如果翻一倍,平均温度就会升高2.3℃。1975年,三维大气环流模式预测到北半球高纬度地区气候变暖会加剧,后来观测证明确实如此。
  • 尽管政府间气候变化专门委员会在2007年获得诺贝尔和平奖,2021年诺贝尔物理学奖旨在表彰在理解地球气候演变和当前全球变暖领域取得重大进展。

 


参考资料及说明

封面图片:从左至右:真锅淑郎(Syukuro Manabe)、克劳斯·哈塞尔曼(Klaus Hasselmann )与乔治·帕里西(Giorgio Parisi )。[来源:©插图来自尼克拉斯·艾尔默海德]

[1] Richardson, L. F. 1922. Weather Prediction by Numerical Process, Cambridge University Press, 250 pp, Cambridge, UK

[2] Charney JG, Fjörtoft R, von Neumann J. 1950. Numerical Integration of the Barotropic Vorticity Equation. Tellus 2 (4), 237-254

[3] Phillips, N. A. 1956. The general circulation of the atmosphere: A numerical experiment, Q. J. Roy. Meteor. Soc. 82, 123-164

[4] Arrhenius A. 1896. On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground, Phil. Mag. 41, 237-275

[5] Manabe, S, Strickler, RF. 1964. Thermal equilibrium of the atmosphere with a convective adjustment J. Atmos. Sci. 21, 361-85

[6] Manabe, S, Wetherald, RT. 1967. Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci. 24, 241-259

[7] Manabe, S, Wetherald, RT. 1975. The Effects of Doubling the CO2 Concentration on the climate of a General Circulation Model. J. Atmos. Sci. 32, 3-15

[8] Atmospheric convection is the process of vertical movement of air masses induced by density differences, which largely determines temperature and humidity profiles in the troposphere.

[9] IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)). Cambridge University Press. In Press.

[10] Hasselmann K. 1976. Stochastic climate models part I. Theory. Tellus 28(6), 473-485

[11] In analogy to white light, which is composed of light at all frequencies of equal intensity, “white” noise is a random time series whose frequency spectrum is essentially constant. Similarly, “red” noise is a random time series whose frequency spectrum is dominated by low-frequency variations, in analogy to red light.

[12] https://nobelprize.org/uploads/2021/10/fig4_fy_en_21_fingerprints.pdf, after Hegerl and Zwiers, 2011, Use of models in detection & attribution of climate change.

[13] Hasselmann K. 1979. On the Signal-to-Noise Problem in Atmospheric Response Studies. In: Meteorology of Tropical Oceans. Ed. by D.B. Shaw. London: Roy Meteorol Soc. pp. 251 – 259

[14] By analogy with the fingerprint of each person is unique, it is considered that each factor that influences climate leaves its own fingerprint in terms of climate response (Wikipedia)

[15] Santer, BD et al. 2019. Celebrating the anniversary of three key events in climate change science. Nature Clim. Change 9, 180182


环境百科全书由环境和能源百科全书协会出版 (www.a3e.fr),该协会与格勒诺布尔阿尔卑斯大学和格勒诺布尔INP有合同关系,并由法国科学院赞助。

引用这篇文章: KRINNER Gerhard, RAYNAUD Dominique (2024年3月12日), 2021诺奖得主克劳斯·哈塞尔曼与真锅淑郎对气候物理学的贡献, 环境百科全书,咨询于 2024年4月26日 [在线ISSN 2555-0950]网址: https://www.encyclopedie-environnement.org/zh/climat-zh/klaus-hasselmann-syukuro-manabe-nobel-prize-2021/.

环境百科全书中的文章是根据知识共享BY-NC-SA许可条款提供的,该许可授权复制的条件是:引用来源,不作商业使用,共享相同的初始条件,并且在每次重复使用或分发时复制知识共享BY-NC-SA许可声明。